Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 120: 92-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25014899

ABSTRACT

The ever-increasing production and use of nanocrystaline semiconductors (Quantum dots; QDs) will inevitably result in increased appearance of these nanomaterials in the aquatic environment. However, the behavior and potential toxicity of heavy metal constituted nanoparticulates in aquatic invertebrates is largely unknown, especially with regard to molecular responses. The freshwater crustacean Daphnia pulex is a well-suited toxicological and ecological model to study molecular responses to environmental stressors. In this study, D. pulex were exposed for 48 h to sublethal doses of QDs (25% and 50% of LC50) with differing spectral properties (CdTe and CdSe/ZnS QDs) and Cd and Zn salts. Our data suggest that acute exposure to both CdSO4 and Cd-based QDs leads to Cd uptake in vivo, which was biologically supported by the observation of increased expression of metallothionein (MT-1). Furthermore, Cd, Zn, and CdSe/ZnS QDs induced different patterns of gene expression regarding stress defense and DNA repair, which furthers our knowledge regarding which response pathways are affected by nanoparticulate forms of metals versus ionic forms in aquatic crustaceans.


Subject(s)
Cadmium/toxicity , DNA Repair/genetics , Daphnia/drug effects , Oxidative Stress/drug effects , Quantum Dots/toxicity , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Cadmium/metabolism , Daphnia/enzymology , Daphnia/genetics , Daphnia/metabolism , Environmental Monitoring , Fresh Water/chemistry , Gene Expression/drug effects , Metal Nanoparticles/toxicity , Metallothionein/metabolism , Oxidative Stress/genetics , Toxicity Tests, Acute , Water Pollutants, Chemical/metabolism , Zinc/metabolism
2.
Sci Total Environ ; 444: 121-7, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23268140

ABSTRACT

The Deepwater Horizon accident in the Gulf of Mexico resulted in a sustained release of crude oil, and weathered oil was reported to have washed onto shorelines and marshes along the Gulf coast. One strategy to minimize effects of tarballs, slicks, and oil sheen, and subsequent risk to nearshore ecosystem resources was to use oil dispersants (primarily Corexit® 9500) at offshore surface and deepwater locations. Data have been generated reporting how Corexit® 9500 and other dispersants may alter the acute toxicity of crude oil (Louisiana sweet crude) to marine organisms. However, it remains unknown how oil dispersants may influence bioaccumulation of petroleum hydrocarbons in nearshore crustaceans. We compare bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) from exposures to the water accommodated fraction (WAF) of weathered Mississippi Canyon 252 oil (~30 d post spill) and chemically-enhanced WAF when mixed with Corexit® EC9500A. Whole body total petroleum hydrocarbon (TPH) concentrations were greater than background for both treatments after 6h of exposure and reached steady state at 96 h. The modeled TPH uptake rate was greater for crabs in the oil only treatment (k(u)=2.51 mL/g/h vs. 0.76 mL/g/h). Furthermore, during the uptake phase TPH patterns in tissues varied between oil only and oil+dispersant treatments. Steady state bioaccumulation factors (BAFs) were 19.0 mL/g and 14.1 mL/g for the oil only and oil+Corexit treatments, respectively. These results suggest that the toxicokinetic mechanisms of oil may be dependent on oil dispersion (e.g., smaller droplet sizes). The results also indicate that multiple processes and functional roles of species should be considered for understanding how dispersants influence bioavailability of petroleum hydrocarbons.


Subject(s)
Brachyura/metabolism , Hydrocarbons/pharmacokinetics , Petroleum/metabolism , Water Pollutants, Chemical/pharmacokinetics , Animals , Brachyura/drug effects , Gulf of Mexico , Hydrocarbons/toxicity , Petroleum/toxicity , Petroleum Pollution , Water Pollutants, Chemical/toxicity , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...