Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961067

ABSTRACT

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Subject(s)
Antibodies, Viral , Cross Reactions , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Pandemics , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H3N2 Subtype/immunology , Female , Cross Reactions/immunology , Mice , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Aged , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Birds/virology , Middle Aged , Influenza in Birds/epidemiology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H9N2 Subtype/immunology , Adult , Viral Proteins/immunology , Viral Proteins/genetics
2.
Nature ; 622(7984): 810-817, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853121

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Internationality , Animals , Africa/epidemiology , Animals, Wild/virology , Asia/epidemiology , Birds/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Europe/epidemiology , Evolution, Molecular , Host Specificity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Influenza in Birds/transmission , Influenza in Birds/virology , Mammals/virology , Mutation , Phylogeny , Poultry/virology
3.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37561581

ABSTRACT

Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.


Subject(s)
Channelopathies , Induced Pluripotent Stem Cells , Mice , Animals , Humans , Child , Gene Editing , Channelopathies/genetics , RNA, Guide, CRISPR-Cas Systems , Retina , Retinal Pigment Epithelium , Mutation , RNA, Messenger
4.
Bioact Mater ; 30: 142-153, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37575875

ABSTRACT

Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.

5.
J Neurotrauma ; 40(21-22): 2410-2426, 2023 11.
Article in English | MEDLINE | ID: mdl-37279290

ABSTRACT

Traumatic brain injury (TBI) and alcohol misuse are inextricably linked and can increase the risk for development of neurodegenerative diseases, particularly in military veterans and contact sport athletes. Proteinopathy (defects in protein degradation) is considered an underlying factor in neurodegenerative diseases. Whether it contributes to TBI/alcohol-mediated neurodegeneration is unexplored, however. Our recent studies have identified ISGylation, a conjugated form of ISG15 (Interferon-Stimulated Gene 15) and inducer of proteinopathy, as a potential mechanistic link underlying TBI-mediated neurodegeneration and proteinopathy in veterans. In the current study, a rat model of combined TBI and alcohol use was utilized to investigate the same relationship. Here, we report sustained induction of Interferon ß (IFNß), changes in TAR DNA Binding 43 (TDP-43) ISGylation levels, TDP-43 proteinopathy (C-terminal fragmentation [CTF]), and neurodegeneration in the ventral horns of the lumbar spinal cords (LSCs) and/or motor cortices (MCs) of female rats post-TBI in a time-dependent manner. In males, these findings mostly remained non-significant, although moderate alcohol use appears to decrease neurodegeneration in males (but not females) post-TBI. We, however, do not claim that moderate alcohol consumption is beneficial for preventing TBI-mediated neurodegeneration. We have previously demonstrated that ISGylation is increased in the LSCs of veterans with TBI/ALS (amyotrophic lateral sclerosis). Here, we show increased ISGylation of TDP-43 in the LSCs of TBI/ALS-afflicted female veterans compared with male veterans. Knowing that ISGylation induces proteinopathy, we suggest targeting ISGylation may prevent proteinopathy-mediated neurodegeneration post-TBI, particularly in women; however, causal studies are required to confirm this claim.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain Injuries, Traumatic , Chronic Traumatic Encephalopathy , Humans , Male , Female , Animals , Rats , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Rodentia/metabolism , Brain Injuries, Traumatic/metabolism , DNA-Binding Proteins/genetics , Alcohol Drinking
6.
Emerg Infect Dis ; 29(7): 1397-1406, 2023 07.
Article in English | MEDLINE | ID: mdl-37347532

ABSTRACT

Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during 2013-2019 revealed gene pool enrichment from imported swine from Asia and North America and showed long-term maintenance, persistence, and reassortment of virus lineages. Genome sequencing showed continuous enrichment of H1 and H3 diversity through repeat introduction of human virus variants and swine influenza viruses endemic in other countries. In particular, the North American H1-δ1a strain, which has a triple-reassortant backbone that potentially results in increased human adaptation, emerged as a virus that could pose a zoonotic threat. Co-circulation of H1-δ1a viruses with other swine influenza virus genotypes raises concerns for both human and animal health.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Humans , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Vietnam/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Swine Diseases/epidemiology , Influenza A virus/genetics
7.
Alcohol Clin Exp Res (Hoboken) ; 47(7): 1283-1296, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37208939

ABSTRACT

BACKGROUND: Although a large percentage of chronic pain patients consume alcohol to manage their pain, there is a significant gap in knowledge regarding the mechanisms underlying the antinociceptive effects of alcohol. METHODS: To determine the longitudinal analgesic effects of alcohol, we utilized the complete Freund's adjuvant (CFA) model of inflammatory pain in adult female and male Wistar rats. Both somatic and negative motivational aspects of pain were measured using the electronic von Frey (mechanical nociception) system, thermal probe test (thermal nociception), and mechanical conflict avoidance task (pain avoidance-like behavior). Tests were conducted at baseline and 1 and 3 weeks following intraplantar CFA or saline administration. At both time points post-CFA, animals were treated with each of three doses of alcohol (intraperitoneal; 0, 0.5, and 1.0 g/kg) over separate days in a Latin square design. RESULTS: Alcohol produced dose-dependent mechanical analgesia and antihyperalgesia in females but only antihyperalgesia in males. Although alcohol continued to attenuate CFA-induced decreases in both thermal and mechanical nociceptive thresholds between 1 and 3 weeks post-CFA, it appeared less effective at increasing thresholds 3 weeks after CFA induction. CONCLUSIONS: These data suggest that individuals may develop tolerance to alcohol's ability to alleviate both somatic and negative motivational symptoms of chronic pain over time. We also discovered sex-specific neuroadaptations in protein kinase A-dependent phosphorylation of GluR1 subunits and extracellular signal-regulated kinase (ERK 1/2) phosphorylation in nociceptive brain centers of animals receiving an alcohol challenge 1 week post-CFA. Together, these findings illustrate a sex-specific regulation of behavioral and neurobiological indices of persistent pain by alcohol.

8.
Article in English | MEDLINE | ID: mdl-37113206

ABSTRACT

Objective: To evaluate the impact of a diagnostic stewardship intervention on Clostridioides difficile healthcare-associated infections (HAI). Design: Quality improvement study. Setting: Two urban acute care hospitals. Interventions: All inpatient stool testing for C. difficile required review and approval prior to specimen processing in the laboratory. An infection preventionist reviewed all orders daily through chart review and conversations with nursing; orders meeting clinical criteria for testing were approved, orders not meeting clinical criteria were discussed with the ordering provider. The proportion of completed tests meeting clinical criteria for testing and the primary outcome of C. difficile HAI were compared before and after the intervention. Results: The frequency of completed C. difficile orders not meeting criteria was lower [146 (7.5%) of 1,958] in the intervention period (January 10, 2022-October 14, 2022) than in the sampled 3-month preintervention period [26 (21.0%) of 124; P < .001]. C. difficile HAI rates were 8.80 per 10,000 patient days prior to the intervention (March 1, 2021-January 9, 2022) and 7.69 per 10,000 patient days during the intervention period (incidence rate ratio, 0.87; 95% confidence interval, 0.73-1.05; P = .13). Conclusions: A stringent order-approval process reduced clinically nonindicated testing for C. difficile but did not significantly decrease HAIs.

9.
Nat Commun ; 14(1): 2422, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105966

ABSTRACT

Hong Kong experienced a surge of Omicron BA.2 infections in early 2022, resulting in one of the highest per-capita death rates of COVID-19. The outbreak occurred in a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures (PHSMs). By analyzing genome sequences and epidemiological data, we reconstructed the epidemic trajectory of BA.2 wave and found that the initial BA.2 community transmission emerged from cross-infection within hotel quarantine. The rapid implementation of PHSMs suppressed early epidemic growth but the effective reproduction number (Re) increased again during the Spring festival in early February and remained around 1 until early April. Independent estimates of point prevalence and incidence using phylodynamics also showed extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. Discordant inferences based on genomic and epidemiological data underscore the need for research to improve near real-time epidemic growth estimates by combining multiple disparate data sources to better inform outbreak response policy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Hong Kong/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks , Basic Reproduction Number
10.
Neuropharmacology ; 231: 109512, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36948356

ABSTRACT

The current opioid epidemic is a national health crisis marked by skyrocketing reports of opioid misuse and overdose deaths. Despite the risks involved, prescription opioid analgesics are the most powerful and effective medications for treating pain. There is a clear need to investigate the risk of opioid misuse liability in male and female adults experiencing chronic pain. In the present study, we tested the hypothesis that chronic inflammatory pain would increase fentanyl intake, motivation to acquire fentanyl, and drug seeking in the absence of fentanyl in rats. Fentanyl intake, motivation for fentanyl, and drug seeking were tested under limited and extended access conditions using intravenous fentanyl self-administration. Fos activity in ventral tegmental area (VTA) dopamine neurons following intravenous fentanyl challenge (35 µg/kg) was examined using immunohistochemistry. Finally, we tested whether low-dose fentanyl supports development of conditioned place preference under an inflammatory pain state in rats. Contrary to our hypothesis, fentanyl self-administration and VTA Fos activity were unaffected by inflammatory pain status. During acquisition, males exhibited increased fentanyl intake compared to females. Animals given extended access to fentanyl escalated fentanyl intake over time, while animals given limited access did not. Males given extended access to fentanyl demonstrated a greater increase in fentanyl intake over time compared to females. During the dose-response test, females given limited access to fentanyl demonstrated increased motivation to acquire fentanyl compared to males. Both sexes displayed significant increases in responding for fentanyl as unit fentanyl doses were lowered. Following fentanyl challenge, females exhibited higher numbers of Fos-positive non-dopaminergic VTA neurons compared to males. Using conditioned place preference, we found that chronic inflammatory pain promotes fentanyl preference in males, but not females. These findings suggest that established fentanyl self-administration is resistant to change by inflammatory pain manipulation in both sexes, but chronic inflammatory pain increases the rewarding properties of low-dose fentanyl in males.


Subject(s)
Chronic Pain , Opioid-Related Disorders , Female , Rats , Male , Animals , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Motivation
13.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36573541

ABSTRACT

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Influenza in Birds/epidemiology , Cambodia/epidemiology , Birds , Ducks , Poultry , Phylogeny
14.
Virus Evol ; 8(2): veac062, 2022.
Article in English | MEDLINE | ID: mdl-35919872

ABSTRACT

China experienced a resurgence of seasonal influenza activity throughout 2021 despite intermittent control measures and prolonged international border closure. We show genomic evidence for multiple A(H3N2), A(H1N1), and B/Victoria transmission lineages circulating over 3 years, with the 2021 resurgence mainly driven by two B/Victoria clades. Phylodynamic analysis revealed unsampled ancestry prior to widespread outbreaks in December 2020, showing that influenza lineages can circulate cryptically under non-pharmaceutical interventions enacted against COVID-19. Novel haemagglutinin gene mutations and altered age profiles of infected individuals were observed, and Jiangxi province was identified as a major source for nationwide outbreaks. Following major holiday periods, fluctuations in the effective reproduction number were observed, underscoring the importance of influenza vaccination prior to holiday periods or travel. Extensive heterogeneity in seasonal influenza circulation patterns in China determined by historical strain circulation indicates that a better understanding of demographic patterns is needed for improving effective controls.

15.
Clin Cancer Res ; 28(24): 5330-5342, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35972732

ABSTRACT

PURPOSE: Despite the success of chimeric antigen receptor (CAR) T-cell therapy against hematologic malignancies, successful targeting of solid tumors with CAR T cells has been limited by a lack of durable responses and reports of toxicities. Our understanding of the limited therapeutic efficacy in solid tumors could be improved with quantitative tools that allow characterization of CAR T-targeted antigens in tumors and accurate monitoring of response. EXPERIMENTAL DESIGN: We used a radiolabeled FAP inhibitor (FAPI) [18F]AlF-FAPI-74 probe to complement ongoing efforts to develop and optimize FAP CAR T cells. The selectivity of the radiotracer for FAP was characterized in vitro, and its ability to monitor changes in FAP expression was evaluated using rodent models of lung cancer. RESULTS: [18F]AlF-FAPI-74 showed selective retention in FAP+ cells in vitro, with effective blocking of the uptake in presence of unlabeled FAPI. In vivo, [18F]AlF-FAPI-74 was able to detect FAP expression on tumor cells as well as FAP+ stromal cells in the tumor microenvironment with a high target-to-background ratio. We further demonstrated the utility of the tracer to monitor changes in FAP expression following FAP CAR T-cell therapy, and the PET imaging findings showed a robust correlation with ex vivo analyses. CONCLUSIONS: This noninvasive imaging approach to interrogate the tumor microenvironment represents an innovative pairing of a diagnostic PET probe with solid tumor CAR T-cell therapy and has the potential to serve as a predictive and pharmacodynamic response biomarker for FAP as well as other stroma-targeted therapies. A PET imaging approach targeting FAP expressed on activated fibroblasts of the tumor stroma has the potential to predict and monitor therapeutic response to FAP-targeted CAR T-cell therapy. See related commentary by Weber et al., p. 5241.


Subject(s)
Gelatinases , Serine Endopeptidases , Cell Line, Tumor , Positron-Emission Tomography , T-Lymphocytes , Positron Emission Tomography Computed Tomography , Gallium Radioisotopes
16.
J Bone Miner Res ; 37(9): 1787-1807, 2022 09.
Article in English | MEDLINE | ID: mdl-35848051

ABSTRACT

The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Calcium/metabolism , Gene Dosage , HEK293 Cells , Humans , Hypercalcemia/genetics , Infant, Newborn , Mutation/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , gamma-Aminobutyric Acid/genetics
17.
Cancer Immunol Res ; 10(9): 1084-1094, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35862229

ABSTRACT

ABSTRACT: Immune checkpoint inhibitors (ICI) have been effective in treating a subset of refractory solid tumors, but only a small percentage of treated patients benefit from these therapies. Thus, there is a clinical need for reliable tools that allow for the early assessment of response to ICIs, as well as a preclinical need for imaging tools that aid in the future development and understanding of immunotherapies. Here we demonstrate that CD69, a canonical early-activation marker expressed on a variety of activated immune cells, including cytotoxic T cells and natural killer (NK) cells, is a promising biomarker for the early assessment of response to immunotherapies. We have developed a PET probe by radiolabeling a highly specific CD69 mAb, H1.2F3, with Zirconium-89 (89Zr), [89Zr]-deferoxamine (DFO)-H1.2F3. [89Zr]-DFO-H1.2F3 detected changes in CD69 expression on primary mouse T cells in vitro and detected activated immune cells in a syngeneic tumor immunotherapy model. In vitro uptake studies with [89Zr]-DFO-H1.2F3 showed a 15-fold increase in CD69 expression for activated primary mouse T cells, relative to untreated resting T cells. In vivo PET imaging showed that tumors of ICI-responsive mice had greater uptake than the tumors of nonresponsive and untreated mice. Ex vivo biodistribution, autoradiography, and IHC analyses supported the PET imaging findings. These data suggest that the CD69 PET imaging approach detects CD69 expression with sufficient sensitivity to quantify immune cell activation in a syngeneic mouse immunotherapy model and could allow for the prediction of therapeutic immune responses to novel immunotherapies.


Subject(s)
Radioisotopes , Zirconium , Animals , Cell Line, Tumor , Deferoxamine/pharmacology , Immunologic Factors , Immunotherapy , Mice , Positron-Emission Tomography/methods , Tissue Distribution
18.
Nat Commun ; 13(1): 2884, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610217

ABSTRACT

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection with the most severe disease in the young and elderly. Non-pharmaceutical interventions and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated regions of the Australian continent, New South Wales (NSW) and Australian Capital Territory (ACT) in the east, and Western Australia. Through genomic sequencing we reveal a major reduction in RSV genetic diversity following COVID-19 emergence with two genetically distinct RSV-A clades circulating cryptically, likely localised for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria and to cause extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic, as mitigation measures may disrupt seasonal patterns, causing larger or more severe outbreaks.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Infant , Pandemics/prevention & control , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics , Seasons , Victoria
19.
Nat Commun ; 13(1): 1721, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361789

ABSTRACT

Annual epidemics of seasonal influenza cause hundreds of thousands of deaths, high levels of morbidity, and substantial economic loss. Yet, global influenza circulation has been heavily suppressed by public health measures and travel restrictions since the onset of the COVID-19 pandemic. Notably, the influenza B/Yamagata lineage has not been conclusively detected since April 2020, and A(H3N2), A(H1N1), and B/Victoria viruses have since circulated with considerably less genetic diversity. Travel restrictions have largely confined regional outbreaks of A(H3N2) to South and Southeast Asia, B/Victoria to China, and A(H1N1) to West Africa. Seasonal influenza transmission lineages continue to perish globally, except in these select hotspots, which will likely seed future epidemics. Waning population immunity and sporadic case detection will further challenge influenza vaccine strain selection and epidemic control. We offer a perspective on the potential short- and long-term evolutionary dynamics of seasonal influenza and discuss potential consequences and mitigation strategies as global travel gradually returns to pre-pandemic levels.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , COVID-19/epidemiology , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Seasons
20.
PLoS Pathog ; 18(4): e1009973, 2022 04.
Article in English | MEDLINE | ID: mdl-35417497

ABSTRACT

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , North America/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...