Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 463: 184-196, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33838289

ABSTRACT

Neuronal excitability and susceptibility to excitotoxic damage can be sex-specific, with neurons from males usually being more 'easily excitable' compared to neurons from females, especially during development. Increased excitability at an individual neuronal level can lead to the formation of hyperexcitable neuronal networks, which, consequently can make the brain more seizure prone. Both animal and clinical data suggest that males experience more frequent and severe seizures than do females. Serotonin (5-hydroxytryptamine; 5-HT) can mediate neuronal excitability and seizure behavior, often serving as an anticonvulsant. Importantly, 5-HT signaling during parts of the perinatal period is sexually dimorphic. Sex differences during development have been reported in both serotonin levels and receptor type (excitatory vs. inhibitory) expression in a manner that may leave the male brain more vulnerable to over-excitation. Thus, we aimed to determine if the anticonvulsant effects of 5-HT were sex- and/or age-dependent in juvenile animals. We report a baseline sex difference in N-methyl-d-aspartate (NMDA)-induced seizure behavior and hippocampal neuronal loss, with postnatal day (PND) 14 males exhibiting more severe seizure behavior compared to females. Pretreatment with the general 5-HT receptor agonist 5-methoxytryptamine (5-MT) abolishes baseline sex differences, providing an anticonvulsant effect for males only. These sex differences appear to be at least in part organized by testosterone, as females given neonatal androgen exhibit a seizure behavior profile in between that of males and females.


Subject(s)
N-Methylaspartate/adverse effects , Seizures/drug therapy , Serotonin/therapeutic use , Animals , Female , Male , Pregnancy , Rats , Receptors, N-Methyl-D-Aspartate , Seizures/chemically induced , Sex Characteristics
2.
Brain Behav ; 9(5): e01265, 2019 05.
Article in English | MEDLINE | ID: mdl-30912298

ABSTRACT

INTRODUCTION: Perineuronal nets (PNNs) are extracellular matrices that encompass parvalbumin-expressing parvalbumin positive (PVALB+) fast-spiking inhibitory interneurons where they protect and stabilize afferent synapses. Recent observations that gonadal hormones influence PVALB+ neuron development suggest that PNN regulation may be sexually dimorphic. Sex differences in PNN abundance and complexity have been reported in sexually dimorphic nuclei in zebra finch brains; however, corresponding differences in mammalian brains have not been investigated. METHODS: In this study we assessed the number of cortical and hippocampal PNNs in juvenile and young adult male and female rats using fluorescent immunohistochemistry for PVALB and the PNN marker Wisteria Floribunda Lectin. RESULTS: We report here that PNNs are numerous and well developed in hippocampal cornu ammonis-1 of adult males but are lower in juvenile and possibly adult females. No significant differences were observed between sexes in cornu ammonis-3 or adjacent neocortex. There was an observed developmental difference in the neocortex as juveniles had more PVALB+ cells, but fewer PNN+ cells, than adults. CONCLUSIONS: Because PNNs are integral for several hippocampal-mediated learning and memory tasks, these observations have potential sex-dependent translational implications for clinical strategies targeting cognitive dysfunction.


Subject(s)
Interneurons/physiology , Parvalbumins/metabolism , Sex Characteristics , Age Factors , Animals , Behavior, Animal/physiology , CA1 Region, Hippocampal/metabolism , Extracellular Matrix/metabolism , Female , Immunohistochemistry , Male , Rats , Temporal Lobe/metabolism
3.
Brain Res ; 1701: 85-92, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30040918

ABSTRACT

Perinatal administration of serotonin (5HT) agonist 5-methoxytryptamine (5MT) induces developmental hyperserotonemia (DHS; elevated blood serotonin) and produces behavioral and neurochemical changes in rats relevant to Autism Spectrum Disorder (ASD), such as oxytocin dysregulation. Disruption of the oxytocin system may underlie many of the social deficits present in ASD individuals, thus we investigated the mechanism(s) underlying DHS-induced oxytocin dysregulation. The most parsimonious mechanism of 5HT action would be alteration of 5HT receptors on oxytocin cells; 5HT is known to influence cell survival as well as influence oxytocin release via 5HT1A and 5HT2A receptors, which co-localize in oxytocin-expressing (OXT+) cells in the paraventricular nucleus (PVN) of the hypothalamus. We report that both male and female DHS rats have a lower percentage of OXT+ cells co-localized with excitatory 5HT2A receptors than control animals, while only DHS females have a higher percentage of OXT+ cells co-localized with inhibitory 5HT1A receptors compared to controls. Importantly, DHS also reduces the number of OXT+ cells in the PVN of adult male, but not female, rats. This pattern suggests that females, but not males, can regulate 5HT receptors in response to DHS in a manner that promotes oxytocin cell survival and functional efficiency. In addition, it has been previously reported that DHS alters normal juvenile play, especially in males, thus we also tested play partner preference among juvenile control and DHS males. Sex differences observed using the DHS model of ASD add to its validity, given the pronounced male sex bias in the prevalence of ASD, and emphasize the need for inclusion of both sexes in ASD research.


Subject(s)
Oxytocin/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , 5-Methoxytryptamine/pharmacology , Animals , Autism Spectrum Disorder/blood , Autistic Disorder/blood , Autistic Disorder/metabolism , Disease Models, Animal , Female , Hypothalamus/drug effects , Male , Oxytocin/blood , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/physiology , Serotonin/metabolism , Sex Characteristics , Sex Factors , Sexual Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...