Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Leukoc Biol ; 102(2): 537-549, 2017 08.
Article in English | MEDLINE | ID: mdl-28515226

ABSTRACT

Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions, such as rheumatoid arthritis, vasculitis, cystic fibrosis, and inflammatory bowel disease, increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers, even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (≤10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover, repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point, including the 12-wk follow-up after the last infusion. In addition, CSL324 had no observable effect on basic neutrophil functions, such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases.


Subject(s)
Antibodies, Neutralizing/pharmacology , Neutropenia , Neutrophils/drug effects , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Flow Cytometry , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Macaca fascicularis , Surface Plasmon Resonance
2.
J Immunol ; 197(11): 4392-4402, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27807194

ABSTRACT

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. G-CSF- and G-CSF receptor-deficient mice are profoundly protected in several models of rheumatoid arthritis, and Ab blockade of G-CSF also protects against disease. To further investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a prelude to human studies of the same approach, we developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of murine G-CSF and thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling. Anti-G-CSF receptor rapidly halted the progression of established disease in collagen Ab-induced arthritis in mice. Neutrophil accumulation in joints was inhibited, without rendering animals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammatory sites. Consistent with this, neutrophils in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adhesion receptors, with reduced CXCR2 and increased CD62L expression. Furthermore, blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammatory cytokines (IL-1ß, IL-6) and chemokines (KC, MCP-1) known to drive tissue damage. Differential gene expression analysis of joint neutrophils showed a switch away from an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis. Importantly, G-CSF receptor blockade did not adversely affect viral clearance during influenza infection in mice. To our knowledge, we describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflammatory joint disease and provide support for pursuing this therapeutic approach in treating neutrophil-associated inflammatory diseases.


Subject(s)
Antibodies, Neutralizing/pharmacology , Arthritis, Experimental/drug therapy , Gene Expression Regulation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/immunology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation/immunology , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Joints/immunology , Joints/pathology , Male , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/pathology , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/immunology
3.
MAbs ; 8(3): 436-53, 2016.
Article in English | MEDLINE | ID: mdl-26651396

ABSTRACT

The ß common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared ß common (ßc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human ßc receptor. The binding epitope of CSL311 on the ßc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human ßc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 ß common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human ßc receptor is central to pathogenesis. The coordinates for the ßc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Cytokine Receptor Common beta Subunit , Epitopes , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-3 , Interleukin-5 , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Crystallography, X-Ray , Cytokine Receptor Common beta Subunit/chemistry , Cytokine Receptor Common beta Subunit/immunology , Eosinophils/immunology , Eosinophils/pathology , Epitopes/chemistry , Epitopes/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-3/antagonists & inhibitors , Interleukin-3/immunology , Interleukin-5/antagonists & inhibitors , Interleukin-5/immunology , Mice
4.
J Immunol Methods ; 407: 48-57, 2014 May.
Article in English | MEDLINE | ID: mdl-24704819

ABSTRACT

Interleukin-13 (IL-13) is a cytokine implicated in airway diseases such as asthma and idiopathic pulmonary fibrosis. IL-13 signals through a heterodimeric receptor complex consisting of IL-13Rα1 and IL-4Rα, known as the type II IL-4R. IL-4 also signals through this receptor and as such many of the biological effects of IL-13 and IL-4 are similar. Here we describe the development of two sensitive bioassays to determine the potency of antagonists of the mouse type II IL-4R. Both IL-13 and IL-4 dose-dependently induce CCL17 production from J774 mouse monocytic cells and CCL11 production from NIH3T3 mouse fibroblasts in the presence of TNFα. The assays were optimized to minimize TNFα concentration, cell number and incubation time whilst retaining a suitable signal-to-background ratio. Anti-cytokine antibodies or recombinant soluble receptors completely neutralized IL-13 or IL-4 activity in these bioassays. The J774 assay was used to screen a panel of anti-mIL-13Rα1 antibodies for neutralizing activity against this receptor. We report the identification of the first monoclonal antibodies that bind mouse IL-13Rα1 and neutralize both IL-13-induced and IL-4-induced cellular function. These antibodies should prove useful for determining the effects of neutralizing IL-13Rα1 in mouse models of disease. In addition, these bioassays may be used for measuring the bioactivity of mouse IL-13 and IL-4 and for the discovery of additional antagonists of the mouse IL-13Rα1/IL-4Rα complex.


Subject(s)
Antibodies, Neutralizing/analysis , Interleukin-13 Receptor alpha1 Subunit/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Chemokine CCL11/metabolism , Cytokines/metabolism , Fibroblasts/immunology , Immunoassay , Interleukin-13/metabolism , Interleukin-13 Receptor alpha1 Subunit/immunology , Interleukin-4/metabolism , Mice , Monocytes/immunology , NIH 3T3 Cells , Receptors, Cell Surface/immunology , Signal Transduction
5.
Cancer Cell ; 24(2): 257-71, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23948300

ABSTRACT

Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer "hallmarks" through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers.


Subject(s)
Cell Transformation, Neoplastic/immunology , Gastrointestinal Neoplasms/immunology , Interleukin-11/metabolism , Interleukin-6/metabolism , Animals , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy , Humans , Interleukin-11/genetics , Interleukin-11/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Molecular Targeted Therapy , Xenograft Model Antitumor Assays
7.
Oncogene ; 23(50): 8206-15, 2004 Oct 28.
Article in English | MEDLINE | ID: mdl-15378001

ABSTRACT

Dysregulation of the centrosome duplication cycle has been implicated in tumorigenesis. Our previous work has shown that the human papillomavirus type 16 (HPV-16) E7 oncoprotein rapidly induces aberrant centrosome and centriole duplication in normal human cells. We report here that HPV E7-induced abnormal centriole duplication is specifically abrogated by a small molecule CDK inhibitor, indirubin-3'-oxime (IO), but not a kinase-inactive derivative. Importantly, normal centriole duplication was not markedly affected by IO, and the inhibitory effects were observed at concentrations that did not affect the G1/S transition of the cell division cycle. Depletion of CDK2 by siRNA similarly abrogated HPV E7-induced abnormal centrosome duplication and ectopic expression of CDK2 in combination with cyclin E or cyclin A could rescue the inhibitory effect of IO. IO treatment also reduced the steady-state level of aneuploid cells in HPV-16 E7-expressing cell populations. Our results suggest that cyclin/CDK2 activity is critically involved in abnormal centrosome duplication induced by HPV-16 E7 oncoprotein expression, but may be dispensable for normal centrosome duplication and cell cycle progression.


Subject(s)
Centrosome , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Oncogene Proteins, Viral/antagonists & inhibitors , Oximes/pharmacology , Base Sequence , Cell Line, Tumor , Humans , Oncogene Proteins, Viral/physiology , Papillomavirus E7 Proteins , RNA , S Phase
8.
Oncogene ; 23(31): 5263-5, 2004 Jul 08.
Article in English | MEDLINE | ID: mdl-15122320

ABSTRACT

The WARTS gene encodes a kinase that localizes to the mitotic apparatus of a dividing cell. Named WARTS after the growths that develop in the eyes of Drosophila in which the gene is deleted. WARTS is also implicated as a tumor suppressor in mice and humans. In this issue of Oncogene, Iida et al. describe experiments suggesting that, in addition to a role in regulating mitosis, WARTS functions to prevent further rounds of DNA synthesis and mitosis in tetraploid cells. As well as opening up new possibilities of exploring the as yet ill-defined mechanistic basis of the tetraploidy checkpoint, the involvement of a tumor-suppressor gene in this checkpoint supports its importance as a safeguard against the acquisition of genomic instability, a key event in the progression to cancer.


Subject(s)
Drosophila Proteins , Neoplasms/genetics , Neoplasms/pathology , Protein Kinases , Protein Serine-Threonine Kinases/physiology , Animals , DNA/biosynthesis , Disease Progression , Drosophila , Genes, Tumor Suppressor , Humans , Mice , Mitosis , Rats
9.
Oncogene ; 23(52): 8419-31, 2004 Nov 04.
Article in English | MEDLINE | ID: mdl-15156195

ABSTRACT

The human homologue of the Drosophila tumor suppressor lethal (2) tumorous imaginal discs (l(2)tid) gene, hTID1, encodes two proteins derived from alternate mRNA splicing. The splice variants TidL and TidS were previously reported from protein overexpression and dominant-negative mutant protein studies to exhibit opposing biological activities in response to exogenous cytotoxic stimuli. TidL was found to promote apoptosis while TidS suppressed it. To elucidate the physiological function of hTID1, we depleted hTID1 proteins using the technique of RNA interference (RNAi). Here, we show that cells essentially lacking expression of hTID1 proteins are protected from cell death in response to multiple stimuli, including cisplatin, tumor necrosis factor alpha/cycloheximide and mitomycin C. We also generated stable cell populations depleted of hTID1 proteins by RNAi using DNA vectors. In addition to apoptosis resistance, stable hTID1 knockdown cells exhibited an enhanced ability for anchorage-independent growth, as measured by an increase in soft-agar colony formation. These results suggest that hTID1 functions as an important cell death regulator and raise the interesting possibility that hTID1 could exert tumor suppressor activity.


Subject(s)
Apoptosis/physiology , Heat-Shock Proteins/metabolism , Apoptosis/genetics , Cell Division/genetics , Cell Division/physiology , HSP40 Heat-Shock Proteins , HeLa Cells , Heat-Shock Proteins/genetics , Humans , Ligands , Mitochondria/metabolism , RNA Interference/physiology
10.
J Biol Chem ; 279(25): 26581-7, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15069086

ABSTRACT

We analyzed the expression of granzyme H in human blood leukocytes, using a novel monoclonal antibody raised against recombinant granzyme H. 33-kDa granzyme H was easily detected in unfractionated peripheral blood mononuclear cells, due to its high constitutive expression in CD3(-)CD56(+) natural killer (NK) cells, whereas granzyme B was less abundant. The NK lymphoma cell lines, YT and Lopez, also expressed high granzyme H levels. Unstimulated CD4(+) and particularly CD8(+) T cells expressed far lower levels of granzyme H than NK cells, and various agents that classically induce T cell activation, proliferation, and enhanced granzyme B expression failed to induce granzyme H expression in T cells. Also, granzyme H was not detected in NK T cells, monocytes, or neutrophils. There was a good correlation between mRNA and protein expression in cells that synthesize both granzymes B and H, suggesting that gzmH gene transcription is regulated similarly to gzmB. Overall, our data indicate that although the gzmB and gzmH genes are tightly linked, expression of the proteins is quite discordant in T and NK cells. The finding that granzyme H is frequently more abundant than granzyme B in NK cells is consistent with a role for granzyme H in complementing the pro-apoptotic function of granzyme B in human NK cells.


Subject(s)
Gene Expression Regulation, Enzymologic , Lymphocytes/enzymology , Serine Endopeptidases/biosynthesis , Animals , Apoptosis , Blotting, Northern , Blotting, Western , CD3 Complex/biosynthesis , CD56 Antigen/biosynthesis , CD8-Positive T-Lymphocytes/metabolism , Cell Division , Cell Line , Cell Line, Tumor , DNA, Complementary/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Granzymes , Humans , Immunohistochemistry , Killer Cells, Natural/metabolism , Leukocytes/enzymology , Leukocytes/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Proteins/chemistry , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Serine Endopeptidases/chemistry , Subcellular Fractions/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...