Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 17(10): 2334-2348, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36150381

ABSTRACT

After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor ß (TGF-ß) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes.


Subject(s)
Bone and Bones , Musculoskeletal System , Ossification, Heterotopic , Regeneration , Amputation, Surgical , Bone and Bones/injuries , Cell Differentiation , Humans , Musculoskeletal System/injuries , Transforming Growth Factor beta
2.
Stem Cells Dev ; 30(9): 473-484, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33715398

ABSTRACT

Heterotopic ossification (HO) is a devastating condition in which ectopic bone forms inappropriately in soft tissues following traumatic injuries and orthopedic surgeries as a result of aberrant mesenchymal progenitor cell (MPC) differentiation. HO leads to chronic pain, decreased range of motion, and an overall decrease in quality of life. While several treatments have shown promise in animal models, all must be given during early stages of formation. Methods for early determination of whether and where endochondral ossification/soft tissue mineralization (HO anlagen) develop are lacking. At-risk patients are not identified sufficiently early in the process of MPC differentiation and soft tissue endochondral ossification for potential treatments to be effective. Hence, a critical need exists to develop technologies capable of detecting HO anlagen soon after trauma, when treatments are most effective. In this study, we investigate high frequency spectral ultrasound imaging (SUSI) as a noninvasive strategy to identify HO anlagen at early time points after injury. We show that by determining quantitative parameters based on tissue organization and structure, SUSI identifies HO anlagen as early as 1-week postinjury in a mouse model of burn/tenotomy and 3 days postinjury in a rat model of blast/amputation. We analyze single cell RNA sequencing profiles of the MPCs responsible for HO formation and show that the early tissue changes detected by SUSI match chondrogenic and osteogenic gene expression in this population. SUSI identifies sites of soft tissue endochondral ossification at early stages of HO formation so that effective intervention can be targeted when and where it is needed following trauma-induced injury. Furthermore, we characterize the chondrogenic to osteogenic transition that occurs in the MPCs during HO formation and correlate gene expression to SUSI detection of the HO anlagen.


Subject(s)
Disease Models, Animal , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/genetics , Ultrasonography/methods , Animals , Burns/diagnostic imaging , Burns/genetics , Cell Differentiation/genetics , Chondrogenesis/genetics , Gene Expression Profiling/methods , Gene Ontology , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Osteogenesis/genetics , RNA-Seq/methods , Rats, Sprague-Dawley , Rodentia , Single-Cell Analysis/methods , Tenotomy , X-Ray Microtomography/methods
3.
FASEB J ; 34(12): 15753-15770, 2020 12.
Article in English | MEDLINE | ID: mdl-33089917

ABSTRACT

Ischemia reperfusion (IR) injury results in devastating skeletal muscle fibrosis. Here, we recapitulate this injury with a mouse model of hindlimb IR injury which leads to skeletal muscle fibrosis. Injury resulted in extensive immune infiltration with robust neutrophil extracellular trap (NET) formation in the skeletal muscle, however, direct targeting of NETs via the peptidylarginine deiminase 4 (PAD4) mechanism was insufficient to reduce muscle fibrosis. Circulating levels of IL-10 and TNFα were significantly elevated post injury, indicating toll-like receptor (TLR) signaling may be involved in muscle injury. Administration of hydroxychloroquine (HCQ), a small molecule inhibitor of TLR7/8/9, following injury reduced NET formation, IL-10, and TNFα levels and ultimately mitigated muscle fibrosis and improved myofiber regeneration following IR injury. HCQ treatment decreased fibroadipogenic progenitor cell proliferation and partially inhibited ERK1/2 phosphorylation in the injured tissue, suggesting it may act through a combination of TLR7/8/9 and ERK signaling mechanisms. We demonstrate that treatment with FDA-approved HCQ leads to decreased muscle fibrosis and increased myofiber regeneration following IR injury, suggesting short-term HCQ treatment may be a viable treatment to prevent muscle fibrosis in ischemia reperfusion and traumatic extremity injury.


Subject(s)
Extracellular Traps/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Neutrophils/metabolism , Reperfusion Injury/metabolism , Signal Transduction/physiology , Toll-Like Receptors/metabolism , Animals , Cell Proliferation/physiology , Disease Models, Animal , Fibrosis/metabolism , Interleukin-10/metabolism , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Protein-Arginine Deiminase Type 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
J Immunol ; 204(8): 2203-2215, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32161098

ABSTRACT

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.


Subject(s)
Fibrosis/immunology , Fibrosis/pathology , Macrophages/immunology , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myeloid Cells/immunology , Transforming Growth Factor beta1/immunology , Animals , Cardiotoxins , Fibrosis/complications , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/pathology , Phenotype , Reperfusion Injury/chemically induced , Reperfusion Injury/complications , Reperfusion Injury/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...