Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 190: 128-134, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26212951

ABSTRACT

As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions.


Subject(s)
Caseins/chemistry , Iron/chemistry , Phosphates/chemistry , Phosphoserine/chemistry
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 041712, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230300

ABSTRACT

Deuterium NMR spectroscopy has been used to study the director dynamics of the nematic liquid-crystal system cetyl trimethylammonium bromide/D2O under the action of applied viscous torques. Shear forces were applied using a custom-built Couette cell that was introduced into an NMR superconducting magnet, so that its rotational axis was parallel to the magnetic field direction, along which the liquid-crystal director originally aligned. Subsequently, the inner cylinder of the cell was rotated continuously at different rates using a stepper motor. The resulting time evolution and ultimate steady-state orientation of the director, governed by the competition between the applied viscous torque with elastic and magnetic terms, was measured via observed changes in the deuterium spectrum. Using a simple gearbox allowed unprecedented access to a low-shear-rate regime in which, above a threshold shear rate, the director of part of the sample was observed to reorient, while the remaining part still aligned with the magnetic field. Subsequent increases in the applied rotational rate were found to increase the relative proportion of the orienting fraction. Spatially resolved NMR spectra showed that the orienting and field-aligned fractions formed separated bands across the gap of the Couette cell, with director reorientation being initiated at the moving inner wall. The behavior was found to be consistent with the often ignored variation in velocity gradient manifest across the gap of a cylindrical cell, so that as the angular frequency of the inner cylinder was increased the radial location of the critical shear rate required for reorientation traversed the gap. Once the applied rotational rate was sufficient to reorient the director of the entire sample, the dependence of the exhibited steady-state orientation on the average applied shear rate was measured. These results could be fitted to an analytical solution of the force-balance equation, made tractable by the assumption that the elasticity term was of minor significance and could be ignored. Additionally, the use of a numerical solution of the full force-balance equation, which explicitly includes elasticity and secondary flow and additionally allows the time evolution of the director orientation to be calculated, was investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...