Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Biol Chem ; 300(5): 107265, 2024 May.
Article in English | MEDLINE | ID: mdl-38582452

ABSTRACT

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Histidine Kinase , Protein Domains , Protein Multimerization , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Signal Transduction , Vibrio parahaemolyticus/enzymology , Vibrio parahaemolyticus/genetics
2.
Nat Commun ; 13(1): 7076, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400772

ABSTRACT

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a ß-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.


Subject(s)
RNA, Small Untranslated , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA, Small Untranslated/genetics
3.
Nat Commun ; 13(1): 88, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013214

ABSTRACT

Iodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.


Subject(s)
Atmosphere/analysis , Climate Change/history , Ice Cover/chemistry , Iodine/analysis , Seawater/analysis , Arctic Regions , Atmosphere/chemistry , Greenland , History, 21st Century , History, Ancient , History, Medieval , Humans , Iodine/chemistry , Ozone/analysis , Ozone/chemistry , Seawater/chemistry
4.
Article in English | MEDLINE | ID: mdl-32708240

ABSTRACT

Interdisciplinary approaches are needed to measure the additive or multiplicative impacts of chemical and non-chemical stressors on child development outcomes. The lack of interdisciplinary approaches to environmental health and child development has led to a gap in the development of effective intervention strategies. It is hypothesized that a broader systems approach can support more effective interventions over time. To achieve these goals, detailed study protocols are needed. Researchers in child development typically focus on psychosocial stressors. Less attention is paid to chemical and non-chemical stressors and how the interaction of these stressors may impact child development. This feasibility study aims to bridge the gap between child development and environmental epidemiology research by trialing novel methods of gathering ultrafine particle data with a wearable air sensor, while simultaneously gathering language and noise data with the Language Environment Analysis (LENA) system. Additionally, psychosocial data (e.g., parenting quality, caregiver depression, and household chaos) was gathered from parent reports. Child participants (age 3-4 years) completed cognitive tasks to assess self-regulation and receptive language skills, and provided a biospecimen analyzed for inflammatory biomarkers. Data collection was completed at two time points, roughly corresponding to fall and spring. Twenty-six participants were recruited for baseline data, and 11 participants completed a follow-up session. Preliminary results indicate that it is feasible to gather personal Particulate Matter (PM2.5), language, and noise data, cognitive assessments, and biospecimens from our sample of 3-4-year-old children. While there are obstacles to overcome when working with this age group, future studies can benefit from adapting lessons learned regarding recruitment strategies, study design, and protocol implementation.


Subject(s)
Air Pollutants , Environmental Exposure/analysis , Environmental Monitoring/instrumentation , Wearable Electronic Devices , Air Pollutants/analysis , Child, Preschool , Environmental Monitoring/methods , Feasibility Studies , Female , Humans , Language , Male , Noise, Transportation , Particulate Matter/analysis , Traffic-Related Pollution/analysis
5.
Methods Mol Biol ; 2106: 1-18, 2020.
Article in English | MEDLINE | ID: mdl-31889248

ABSTRACT

The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.


Subject(s)
Electrophoretic Mobility Shift Assay/methods , Escherichia coli Proteins/chemistry , Molecular Chaperones/chemistry , Molecular Probe Techniques , RNA, Small Untranslated/chemistry , RNA-Binding Proteins/chemistry , Repressor Proteins/chemistry , Escherichia coli Proteins/metabolism , Molecular Chaperones/metabolism , RNA Stability , RNA, Small Untranslated/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism
6.
Structure ; 27(10): 1485-1496.e4, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31402222

ABSTRACT

ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Phosphatase 1/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Amino Acid Motifs , Aniline Compounds/metabolism , Binding Sites , Biocatalysis , Crystallography, X-Ray , Humans , Models, Molecular , Organophosphorus Compounds/metabolism , Protein Binding , Protein Conformation , Protein Phosphatase 1/chemistry , Scattering, Small Angle , Tumor Suppressor Protein p53/metabolism , X-Ray Diffraction
7.
Medicine (Baltimore) ; 97(49): e13238, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30544383

ABSTRACT

Controversy exists regarding the best diagnostic and screening tool for sepsis outside the intensive care unit (ICU). Sequential organ failure assessment (SOFA) score has been shown to be superior to systemic inflammatory response syndrome (SIRS) criteria, however, the performance of "Red Flag sepsis criteria" has not been tested formally.The aim of the study was to investigate the ability of Red Flag sepsis criteria to identify the patients at high risk of sepsis-related death in comparison to SOFA based sepsis criteria. We also investigated the comparison of Red Flag sepsis to quick SOFA (qSOFA), SIRS, and national early warning score (NEWS) scores and factors influencing patient mortality.Patients were recruited into a 24-hour point-prevalence study on the general wards and emergency departments across all Welsh acute hospitals. Inclusion criteria were: clinical suspicion of infection and NEWS 3 or above in-line with established escalation criteria in Wales. Data on Red Flag sepsis and SOFA criteria was collected together with qSOFA and SIRS scores and 90-day mortality.459 patients were recruited over a 24-hour period. 246 were positive for Red Flag sepsis, mortality 33.7% (83/246); 241 for SOFA based sepsis criteria, mortality 39.4% (95/241); 54 for qSOFA, mortality 57.4% (31/54), and 268 for SIRS, mortality 33.6% (90/268). 55 patients were not picked up by any criteria. We found that older age was associated with death with OR (95% CI) of 1.03 (1.02-1.04); higher frailty score 1.24 (1.11-1.40); DNA-CPR order 1.74 (1.14-2.65); ceiling of care 1.55 (1.02-2.33); and SOFA score of 2 and above 1.69 (1.16-2.47).The different clinical tools captured different subsets of the at-risk population, with similar sensitivity. SOFA score 2 or above was independently associated with increased risk of death at 90 days. The sequalae of infection-related organ dysfunction cannot be reliably captured based on routine clinical and physiological parameters alone.


Subject(s)
Hospitalization , Organ Dysfunction Scores , Sepsis/diagnosis , Sepsis/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Prevalence , Risk Factors , Sepsis/therapy , Young Adult
8.
BMC Res Notes ; 11(1): 720, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30309393

ABSTRACT

OBJECTIVE: Sepsis mortality is reported to be high worldwide, however recently the attributable fraction of mortality due to sepsis (AFsepsis) has been questioned. If improvements in treatment options are to be evaluated, it is important to know what proportion of deaths are potentially preventable or modifiable after a sepsis episode. The aim of the study was to establish the fraction of deaths directly related to the sepsis episode on the general wards and emergency departments. RESULTS: 839 patients were recruited over the two 24-h periods in 2016 and 2017. 521 patients fulfilled SEPSIS-3 criteria. 166 patients (32.4%) with sepsis and 56 patients (17.6%) without sepsis died within 90 days. Out of the 166 sepsis deaths 12 (7.2%) could have been directly related to sepsis, 28 (16.9%) possibly related and 96 (57.8%) were not related to sepsis. Overall AFsepsis was 24.1%. Upon analysis of the 40 deaths likely to be attributable to sepsis, we found that 31 patients (77.5%) had the Clinical Frailty Score ≥ 6, 28 (70%) had existing DNA-CPR order and 17 had limitations of care orders (42.5%).


Subject(s)
Cause of Death/trends , Emergency Service, Hospital/statistics & numerical data , Hospital Mortality/trends , Patients' Rooms/statistics & numerical data , Sepsis/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Hospitals/statistics & numerical data , Humans , Male , Middle Aged , Organ Dysfunction Scores , Prevalence , Risk Factors , Sepsis/epidemiology , Sepsis/pathology , United Kingdom/epidemiology
9.
Front Neurosci ; 12: 254, 2018.
Article in English | MEDLINE | ID: mdl-29740272

ABSTRACT

There are nearly 50 million people with Alzheimer's disease (AD) worldwide and currently no disease modifying treatment is available. AD is characterized by deposits of Amyloid-ß (Aß), neurofibrillary tangles, and neuroinflammation, and several drug discovery programmes studies have focussed on Aß as therapeutic target. Active immunization and passive immunization against Aß leads to the clearance of deposits in humans and transgenic mice expressing human Aß but have failed to improve memory loss. This review will discuss the possible explanations for the lack of efficacy of Aß immunotherapy, including the role of a pro-inflammatory response and subsequent vascular side effects, the binding site of therapeutic antibodies and the timing of the treatment. We further discuss how antibodies can be engineered for improved efficacy.

10.
Structure ; 25(10): 1582-1588.e3, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28919440

ABSTRACT

Topoisomerase IIß binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , RecQ Helicases/chemistry , RecQ Helicases/metabolism , Animals , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Crystallography, X-Ray , Humans , Mice , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phosphorylation , Protein Conformation , Serine/metabolism , Trans-Activators/metabolism
11.
Nucleic Acids Res ; 45(10): 6238-6251, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28453785

ABSTRACT

Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5΄-phosphate/3΄-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation and that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexible multi-state complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. A mutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.


Subject(s)
DNA End-Joining Repair/physiology , DNA Ligase ATP/physiology , DNA Repair Enzymes/physiology , DNA-Binding Proteins/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Catalytic Domain , DNA Damage , DNA Ligase ATP/chemistry , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , DNA-Binding Proteins/chemistry , Deuterium/metabolism , Developmental Disabilities/genetics , Humans , Mass Spectrometry , Microcephaly/genetics , Models, Molecular , Multiprotein Complexes , Mutation, Missense , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Point Mutation , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Scattering, Small Angle , Seizures/genetics , Syndrome , X-Ray Diffraction
12.
Proc Natl Acad Sci U S A ; 113(31): 8813-8, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432973

ABSTRACT

A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.


Subject(s)
Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Legionella pneumophila/genetics , RNA, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , Gene Expression Profiling/methods , Humans , Legionella pneumophila/metabolism , Legionnaires' Disease/microbiology , Models, Genetic , Regulon/genetics , Transformation, Bacterial
13.
J Biol Chem ; 291(18): 9396-410, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26903517

ABSTRACT

DNA double strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone Lys-63-linked ubiquitin chains in DSB signaling. Here, we defined the activated RNF8-Ubc13∼ubiquitin complex by x-ray crystallography and its functional solution conformations by x-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13 active site. Structure-guided separation-of-function mutations show that the RNF8 E2 stimulating activity is essential for DSB signaling in mammalian cells and is necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin-targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining but not BRCA1 recruitment for homologous recombination. These findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2-E3 interface for possible interventions in cancer and chronic inflammation, and moreover, they establish an independent RNF8 role in BRCA1 recruitment.


Subject(s)
DNA Breaks, Double-Stranded , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitination , Animals , BRCA1 Protein , Crystallography, X-Ray , Mice , Protein Structure, Quaternary , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Sci Rep ; 5: 17475, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26658160

ABSTRACT

Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional/standards , Metals, Heavy/analysis , Pharmacovigilance , Toxicity Tests , Drug Contamination , Drugs, Chinese Herbal/toxicity , Humans , Medicine, Chinese Traditional/adverse effects , Metals, Heavy/toxicity , Toxicity Tests/methods
15.
ACS Chem Biol ; 10(7): 1718-28, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-25909880

ABSTRACT

Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors.


Subject(s)
Nitriles/pharmacology , Nitrofurans/pharmacology , Sulfones/pharmacology , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitination/drug effects , Amino Acid Sequence , Animals , Cell Line , Humans , Mice , Models, Molecular , Molecular Sequence Data , Mutation , NF-kappa B/antagonists & inhibitors , Sequence Alignment , Signal Transduction/drug effects , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
16.
ACS Chem Biol ; 10(5): 1198-208, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25654734

ABSTRACT

Many intracellular protein-protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein-protein interactions mediated by serine phosphorylation.


Subject(s)
BRCA1 Protein/antagonists & inhibitors , Molecular Mimicry , Peptide Library , Amino Acid Sequence , BRCA1 Protein/chemistry , BRCA1 Protein/metabolism , Crystallography, X-Ray , DNA Damage , Humans , Models, Molecular , Molecular Sequence Data , Phosphorylation , Sequence Homology, Amino Acid , Serine/chemistry , Serine/metabolism
17.
Plasmid ; 78: 79-87, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25102058

ABSTRACT

Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.


Subject(s)
Escherichia coli Proteins/metabolism , F Factor/genetics , RNA, Bacterial/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Nucleic Acid Conformation , RNA, Antisense , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Repressor Proteins/genetics
18.
J Mol Biol ; 426(22): 3783-3795, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25284757

ABSTRACT

The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH ß-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , F Factor/metabolism , Membrane Transport Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites , Crystallography, X-Ray , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , F Factor/chemistry , F Factor/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
19.
Sci Total Environ ; 487: 407-19, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24797737

ABSTRACT

Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a <110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia.


Subject(s)
Air Pollutants/analysis , Altitude , Dust/analysis , Environmental Monitoring , Ice Cover/chemistry , Lead/analysis , Ice , India , Snow/chemistry
20.
Structure ; 21(8): 1450-9, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23891287

ABSTRACT

Activation of the DNA replication checkpoint by the ATR kinase requires protein interactions mediated by the ATR-activating protein, TopBP1. Accumulation of TopBP1 at stalled replication forks requires the interaction of TopBP1 BRCT5 with the phosphorylated SDT repeats of the adaptor protein MDC1. Here, we present the X-ray crystal structures of the tandem BRCT4/5 domains of TopBP1 free and in complex with a MDC1 consensus pSDpT phosphopeptide. TopBP1 BRCT4/5 adopts a variant BRCT-BRCT packing interface and recognizes its target peptide in a manner distinct from that observed in previous tandem BRCT- peptide structures. The phosphate-binding pocket and positively charged residues in a variant loop in BRCT5 present an extended binding surface for the negatively charged MDC1 phosphopeptide. Mutations in this surface reduce binding affinity and recruitment of TopBP1 to γH2AX foci in cells. These studies reveal a different mode of phosphopeptide binding by BRCT domains in the DNA damage response.


Subject(s)
Carrier Proteins/chemistry , DNA Replication Timing , DNA-Binding Proteins/chemistry , Nuclear Proteins/chemistry , Trans-Activators/chemistry , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Carrier Proteins/genetics , Cell Cycle Proteins , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Structure, Secondary , Repetitive Sequences, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...