Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 285: 1-12, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29426024

ABSTRACT

This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity.

2.
ACS Nano ; 10(7): 6791-8, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27387146

ABSTRACT

Perfectly ordered states are targets in diverse molecular to microscale systems involving, for example, atomic clusters, protein folding, protein crystallization, nanoparticle superlattices, and colloidal crystals. However, there is no obvious approach to control the assembly of perfectly ordered global free energy minimum structures; near-equilibrium assembly is impractically slow, and faster out-of-equilibrium processes generally terminate in defective states. Here, we demonstrate the rapid and robust assembly of perfect crystals by navigating kinetic bottlenecks using closed-loop control of electric field mediated crystallization of colloidal particles. An optimal policy is computed with dynamic programming using a reaction coordinate based dynamic model. By tracking real-time stochastic particle configurations and adjusting applied fields via feedback, the evolution of unassembled particles is guided through polycrystalline states into single domain crystals. This approach to controlling the assembly of a target structure is based on general principles that make it applicable to a broad range of processes from nano- to microscales (where tuning a global thermodynamic variable yields temporal control over thermal sampling of different states via their relative free energies).

3.
Sci Rep ; 5: 13612, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330058

ABSTRACT

The ability to create multi-scale, periodic colloidal assemblies with unique properties is important to emerging applications. Dynamically manipulating colloidal structures via tunable kT-scale attraction can provide the opportunity to create particle-based nano- and microstructured materials that are reconfigurable. Here, we report a novel tactic to obtain reconfigurable, multi-scale, periodic colloidal assemblies by combining thermoresponsive depletant particles and patterned topographical features that, together, reversibly mediate local kT-scale depletion interactions. This method is demonstrated in optical microscopy experiments to produce colloidal microstructures that reconfigure between well-defined ordered structures and disordered fluid states as a function of temperature and pattern feature depth. These results are well described by Monte Carlo simulations using theoretical depletion potentials that include patterned excluded volume. Ultimately, the approach reported here can be extended to control the size, shape, orientation, and microstructure of colloidal assemblies on multiple lengths scales and on arbitrary pre-defined pattern templates.

4.
Langmuir ; 31(33): 9076-85, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26223386

ABSTRACT

We report measurements of macromolecule-coated colloids interacting with mucus to understand colloidal particle diffusion near mucus-coated surfaces. Total internal reflection microscopy is used to measure colloids with adsorbed poly(ethylene glycol) (PEG), bovine serum albumin (BSA), and polyelectrolyte bilayers (PEB) interacting with mucus to obtain kT-scale energy landscapes and nanometer-scale diffusivity landscapes. Energy landscapes are quantified as a superposition of van der Waals, steric, and tethering potentials, and diffusivity landscapes are modeled by considering lubrication in the presence of permeable layers. PEG- and BSA-coated colloids have soft repulsion with mucus that could enable diffusion of small particles within mucus pores. PEB-coated colloids display attractive tethers to mucus that produce irreversible binding. Different interaction potentials for each particle coating confirm that the ζ-potential is not a successful predictor of particle-mucus interactions and diffusion. Diffusivity landscapes show thick mucus layers are permeable to the solvent and dominate particle-mucus hydrodynamic interactions relative to the thin, impermeable particle coatings. Our results show direct measurements and models to understand how particle coating properties (e.g., elasticity, porosity) control particle interactions and transport near mucus films to potentially aid the design of better particle-based therapeutics and diagnostics.


Subject(s)
Coated Materials, Biocompatible/chemistry , Mucus/chemistry , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Colloids
5.
J Colloid Interface Sci ; 449: 270-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25533537

ABSTRACT

This work reports a model and Monte Carlo simulations of excluded volume mediated interactions between colloids and topographically patterned substrates in the presence of thermosensitive depletants. The model is matched to experiments to yield density, free energy, and potential energy landscapes that quantitatively capture particle microstructures varying from immobilized non-close packed configurations to random fluid states. A numerical model of local excluded volume affects is developed to enable computation of local depletion attraction in the presence of arbitrary geometries. Our findings demonstrate a quantitative modeling method to interpret and predict how surface patterns mediate local depletion interactions, which enables the design of colloidal based materials and devices.

6.
Sci Rep ; 4: 6132, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25139760

ABSTRACT

The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce "low-dimensional" models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals.

7.
Langmuir ; 30(36): 10793-803, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-24601635

ABSTRACT

In this instructional review, we discuss how to control individual colloids and ensembles of colloids using electric fields. We provide background on the electrokinetic transport mechanisms and kT-scale equilibrium colloidal interactions that enable such control. We also describe the experimental configurations, microscopy methods, image analyses, and material systems for which these mechanisms have been successfully employed. Methods are presented for creating various structures including colloidal chains, quasi-2D colloidal crystals, and 3D colloidal crystals. We also describe electric-field-mediated feedback control of the colloidal crystal size as well as colloidal crystal assembly and disassembly. Finally, we discuss future extensions of these methods that aim to incorporate accurate colloidal crystallization dynamic models into electric-field-mediated feedback control to allow rapid assembly, disassembly, and repair of defect-free colloidal structures.

8.
Langmuir ; 29(40): 12337-41, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24067114

ABSTRACT

We report a dynamic analysis to simultaneously measure colloidal forces and hydrodynamic interactions in the presence of both adsorbed and unadsorbed macromolecules. A Bayesian inference method is used to self-consistently obtain the position-dependent potential energy (i.e., energy landscape) and diffusivity (i.e., diffusivity landscape) from measured colloidal trajectories normal to a wall. Measurements are performed for particles and surfaces with adsorbed polyethylene oxide (PEO) copolymer as a function of unadsorbed PEO homopolymer concentration. Energy landscapes are well described by a steric repulsion between adsorbed brushes and depletion attraction due to unadsorbed macromolecules. Diffusivity landscapes show agreement with predicted short-range permeable brush models and long-range mobilities determined by the bulk solution viscosity. Lower than expected mobilities in the vicinity of overlapping depletion layers are attributed to interactions of adsorbed and unadsorbed macromolecules altering nonconservative lubrication forces.

9.
Langmuir ; 28(39): 13816-23, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22950666

ABSTRACT

We report a simple depletion potential that captures measured potentials and phase behavior for micrometer-sized colloids in the presence of unadsorbing charged micelles, charged nanoparticles, nonionic macromolecules, and nonionic hydrogel particles. Total internal reflection microscopy (TIRM) is used to measure net potentials between colloids and surfaces, and video microscopy (VM) is used to measure quasi-2D phase behavior in the same material systems. A modified Asakura-Oosawa (AO) depletion potential is developed to accurately quantify particle-wall potentials and interfacial crystallization via particle-particle potentials in Monte Carlo (MC) simulations. The modified AO potential includes effective depletant sizes, accurate osmotic equations of state, and partition coefficients. Partition coefficients are used as the sole adjustable fitting parameter, although an approach to their theoretical prediction from depletant density profiles is also presented. Our results demonstrate a model that accurately captures depletion interactions and phase behavior in a variety of material systems.


Subject(s)
Acrylamides/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Sodium Dodecyl Sulfate/chemistry , Acrylic Resins , Micelles , Monte Carlo Method , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...