Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(9): e46089, 2012.
Article in English | MEDLINE | ID: mdl-23049946

ABSTRACT

BACKGROUND: The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. METHODS/PRINCIPAL FINDINGS: Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. CONCLUSIONS/SIGNIFICANCE: Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed.


Subject(s)
Oil and Gas Fields , Polycyclic Aromatic Hydrocarbons/analysis , Alberta , Environmental Monitoring , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 433: 379-82, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22819889

ABSTRACT

Identifying potential regional contamination by Alberta oil sands industrial emissions on sensitive ecosystems like the Peace-Athabasca Delta, ~200 km to the north, requires knowledge of historical contaminant levels and trends. Here we provide some of these critically-needed data, based on analysis of metals in a sediment core from an upland precipitation-fed lake in the delta. The lake is well-situated to record the anthropogenic history of airborne contaminant deposition for this region. Sediment records of metals of concern (Pb, Sb, As, Hg) reflect early to mid-20th century increases in North American industrial emissions, followed by reduced emissions due to improved industrial practices after 1950-70. Notably, Pb, Sb, As and Hg have declined since the onset of Alberta oil sands production, belying concerns that this activity has enhanced far-field atmospheric delivery of these contaminants to the delta.


Subject(s)
Air Pollution , Oils , Silicon Dioxide , Alberta
3.
Ambio ; 38(5): 257-65, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19714958

ABSTRACT

This article reviews the historical, instrumental, and future changes in climate for the northern latitudes of Canada. Discussion of historical climate over the last 10 000 years focuses on major climatic shifts including the Medieval Warm Period and the Little Ice Age, and how these changes compare with those most recently experienced during the period of instrumental records. In reference to the latter, details are noted about observed trends in temperature and precipitation that have been recorded over the last half century, which exhibit strong west to east and north to south spatial contrasts. A comprehensive review of future changes is also provided based on outputs from seven atmosphere-ocean global climate models and six emission scenarios. Discussion focuses on annual, seasonal, and related spatial changes for three 30-year periods centered on the 2020s, 2050s, and 2080s. In summary, substantial changes to temperature and precipitation are projected for the Canadian North during the twenty-first century. Although there is considerable variability within the various projections, all scenarios show higher temperature and, for the most part, increasing precipitation over the entire region.


Subject(s)
Climate , Rain , Temperature , Arctic Regions , Canada , Ecosystem , Forecasting , Models, Theoretical , Northern Territory
SELECTION OF CITATIONS
SEARCH DETAIL
...