Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Water Res ; 260: 121903, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38875860

ABSTRACT

Ongoing global climate change will shift nature towards Anthropocene's unprecedented conditions by increasing average temperatures and the frequency and severity of extreme events, such as heatwaves. While such climatic changes pose an increased threat for freshwater ecosystems, other stressors like pesticides may interact with warming and lead to unpredictable effects. Studies that examine the underpinned mechanisms of multiple stressor effects are scarce and often lack environmental realism. Here, we conducted a multiple stressors experiment using outdoor freshwater mesocosms with natural assemblages of macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The effects of the neonicotinoid insecticide imidacloprid (1 µg/L) were investigated in combination with three temperature scenarios representing ambient, elevated temperatures (+4 °C), and heatwaves (+0 to 8 °C), the latter two having similar energy input. We found similar imidacloprid dissipation patterns for all temperature treatments with lowest average dissipation half-lives under both warming scenarios (DT50: 3 days) and highest under ambient temperatures (DT50: 4 days) throughout the experiment. Amongst all communities, only the zooplankton community was significantly affected by the combined treatments. This community demonstrated low chemical sensitivity with lagged and significant negative imidacloprid effects only for cyclopoids. Heatwaves caused early and long-lasting significant effects on the zooplankton community as compared to elevated temperatures, with Polyarthra, Daphnia longispina, Lecanidae, and cyclopoids being the most negatively affected taxa, whereas Ceriodaphnia and nauplii showed positive responses to temperature. Community recovery from imidacloprid stress was slower under heatwaves, suggesting temperature-enhanced toxicity. Finally, microbial and macrofauna litter degradation were significantly enhanced by temperature, whereas the latter was also negatively affected by imidacloprid. A structural equation model depicted cascading food web effects of both stressors with stronger relationships and significant negative stressor effects at higher than at lower trophic levels. Our study highlights the threat of a series of heatwaves compared to elevated temperatures for imidacloprid-stressed freshwaters.

2.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659897

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.

3.
Anim Nutr ; 16: 422-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379939

ABSTRACT

Phytin is the Ca2+-Mg2+-K+ salt of phytic acid that is created and deposited in the aleurone layer and/or germ of grains and legumes. Its high presence in feedstuffs for fowl and swine diets results in it being a universal and significant impediment to optimum performance. Phytin impairs gastrointestinal recovery of a wide array of nutrients, the effect varying with the nutrient concerned. On exposure to low pH during gastric digestion, phytin dissociates into phytic acid and solubilized Ca2+. Even at low gastric pH, phytic acid is negatively charged which forms the basis of its anti-nutritive behavior. Pepsinogen has extensive basic amino acids on its activation peptide that are presented as cations at low pH which are targeted by pepsin for activation. Partially crystalized Ca2+ near the enzyme's active site further stabilizes its newly formed structure. Thus, phytic acid appears to interfere with gastric digestion by several mechanisms; interfering with pepsinogen activation by binding to the polypeptide's basic amino acids; coordinating free Ca2+, destabilizing pepsin; binding some dietary proteins directly, further compromising gastric proteolysis. Upon digesta attaining neutrality in the duodenum, Ca2+ and other cations re-bind with accessible anions, phytic acid being a significant contender. Phytate not only binds free cations but can also strip them from enzymes (e.g. Ca2+, Zn2+) which reduces their structural resistance to autolysis and ability as co-factors (e.g. Zn2+) to increase enzyme activity. Goblet cells initially employ Ca2+ as an electronic shield between mucin layers enabling granule formation and cell storage. After mucin granule release, Ca2+ is progressively displaced by Na+ to free the viscous mucins enabling its translocation. Mucin entangles with the glycocalyx of adjacent enterocytes thereby constructing the unstirred water layer (USWL). Excessive removal of Ca2+ from mucin by phytic acid increases its fluidity facilitating its loss from the USWL with its associated Na+. This partly explains increased mucin and Na+ losses noted with high phytate diets. This review suggests that phytic acid binding of Ca2+ and less so Zn2+ is the basis for the diversity in nutrient losses encountered and that such losses are in proportion to dietary phytate content.

4.
Anim Nutr ; 14: 403-410, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37635931

ABSTRACT

Endogenous protein leaving the ileum largely consists of accrued mucins from the upper gastrointestinal tract (GIT) that had resisted digestion. The amounts released rely on their mucosal generation during enteral feeding which vary with age as well as diet. These digestion resistant proteins of endogenous origin continue to be unavailable in the large intestine, whereas those of dietary origin provide amino acids that largely support the existing microbial population while denying limited amounts for absorption. Other mucins pre-exist within the large intestine as two layers at the lumen surface. A loose layer harboring a diverse microbial population is superimposed on the unstirred water layer (USWL) which simultaneously acts as an obstacle to microbes at the loose layer while performing as a molecular sieve for nutrients. The USWL is formed through interplay between enterocyte and goblet cells; however, the basis for presence of the loose layer is elusive. Large intestinal fermentation predominates within the colon of swine, whereas fowl employ their ceca. Motility within the colon of swine segregates fine materials into haustrae out-pocketings that parallel their placement within the ceca of fowl. Viscous mucins from small intestinal endogenous losses may envelop microbes within the large intestinal lumen to present successive adherents on the USWL that assemble its loose layer. The loose layer continually functions as a microbial reservoir in support of lumen fermentation. Microbial catabolism of mucin within the loose layer is known to be slow, but its proximity to the enterocyte is of advantage to enterocyte absorption with by-product amino acids fostering the USWL.

5.
J Hazard Mater ; 458: 131984, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37421860

ABSTRACT

Beaches are known as hotspots for the accumulation of plastic debris and are widely used for monitoring marine litter on a global scale. However, there is a significant knowledge gap regarding temporal trends in marine plastic pollution. Moreover, existing studies on beach plastics and popular monitoring protocols only provide count data. Consequently, it is not possible to monitor marine litter based on weights, which hampers the further application of beach plastic data. To address these gaps, we conducted an analysis of spatial and temporal trends in plastic abundance and composition using OSPAR beach litter monitoring data from 2001 to 2020. We established size and weight ranges for 75 (macro-)plastic categories to estimate the total plastic weight, enabling us to investigate plastic compositions. While the amount of plastic litter exhibits significant spatial variation, most individual beaches displayed notable temporal trends. The spatial variation in composition is primarily attributed to differences in total plastic abundance. We describe the compositions of beach plastics using generic probability density functions (PDFs) for item size and weight. Our trend analysis, method for estimating plastic weight from count data, and PDFs for beached plastic debris represent novel contributions to the field of plastic pollution science.

6.
Sci Total Environ ; 896: 165081, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37355122

ABSTRACT

Typology systems are frequently used in applied and fundamental ecology and are relevant for environmental monitoring and conservation. They aggregate ecosystems into discrete types based on biotic and abiotic variables, assuming that ecosystems of the same type are more alike than ecosystems of different types with regard to a specific property of interest. We evaluated whether this assumption is met by the Broad River Types (BRT), a recently proposed European river typology system, that classifies river segments based on abiotic variables, when it is used to group biological communities. We compiled data on the community composition of diatoms, fishes, and aquatic macrophytes throughout Europe and evaluated whether the composition is more similar in site groups with the same river type than in site groups of different river types using analysis of similarities, classification strength, typical species analysis, and the area under zeta diversity decline curves. We compared the performance of the BRT with those of four region-based typology systems, namely, Illies Freshwater Ecoregions, the Biogeographic Regions, the Freshwater Ecoregions of the World, and the Environmental Zones, as well as spatial autocorrelation (SA) classifications. All typology systems received low scores from most evaluation methods, relative to predefined thresholds and the SA classifications. The BRT often scored lowest of all typology systems. Within each typology system, community composition overlapped considerably between site groups defined by the types of the systems. The overlap tended to be the lowest for fishes and between Illies Freshwater Ecoregions. In conclusion, we found that existing broad-scale river typology systems fail to delineate site groups with distinct and compositionally homogeneous communities of diatoms, fishes, and macrophytes. A way to improve the fit between typology systems and biological communities might be to combine segment-based and region-based typology systems to simultaneously account for local environmental variation and historical distribution patterns, thus potentially improving the utility of broad-scale typology systems for freshwater biota.


Subject(s)
Diatoms , Ecosystem , Animals , Rivers , Fishes , Environmental Monitoring/methods
7.
RSC Adv ; 13(26): 17633-17655, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37312999

ABSTRACT

Technological advancements are leading to an upsurge in demand for functional materials that satisfy several of humankind's needs. In addition to this, the current global drive is to develop materials with high efficacy in intended applications whilst practising green chemistry principles to ensure sustainability. Carbon-based materials, such as reduced graphene oxide (RGO), in particular, can possibly meet this criterion because they can be derived from waste biomass (a renewable material), possibly synthesised at low temperatures without the use of hazardous chemicals, and are biodegradable (owing to their organic nature), among other characteristics. Additionally, RGO as a carbon-based material is gaining momentum in several applications due to its lightweight, nontoxicity, excellent flexibility, tuneable band gap (from reduction), higher electrical conductivity (relative to graphene oxide, GO), low cost (owing to the natural abundance of carbon), and potentially facile and scalable synthesis protocols. Despite these attributes, the possible structures of RGO are still numerous with notable critical variations and the synthesis procedures have been dynamic. Herein, we summarize the highlights from the historical breakthroughs in understanding the structure of RGO (from the perspective of GO) and the recent state-of-the-art synthesis protocols, covering the period from 2020 to 2023. These are key aspects in the realisation of the full potential of RGO materials through the tailoring of physicochemical properties and reproducibility. The reviewed work highlights the merits and prospects of the physicochemical properties of RGO toward achieving sustainable, environmentally friendly, low-cost, and high-performing materials at a large scale for use in functional devices/processes to pave the way for commercialisation. This can drive the sustainability and commercial viability aspects of RGO as a material.

8.
Free Radic Biol Med ; 204: 276-286, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37217089

ABSTRACT

We developed S1QEL1.719, a novel bioavailable S1QEL (suppressor of site IQ electron leak). S1QEL1.719 prevented superoxide/hydrogen peroxide production at site IQ of mitochondrial complex I in vitro. The free concentration giving half-maximal suppression (IC50) was 52 nM. Even at 50-fold higher concentrations S1QEL1.719 did not inhibit superoxide/hydrogen peroxide production from other sites. The IC50 for inhibition of complex I electron flow was 500-fold higher than the IC50 for suppression of superoxide/hydrogen peroxide production from site IQ. S1QEL1.719 was used to test the metabolic effects of suppressing superoxide/hydrogen peroxide production from site IQin vivo. C57BL/6J male mice fed a high-fat chow for one, two or eight weeks had increased body fat, decreased glucose tolerance, and increased fasting insulin concentrations, classic symptoms of metabolic syndrome. Daily prophylactic or therapeutic oral treatment of high-fat-fed animals with S1QEL1.719 decreased fat accumulation, strongly protected against decreased glucose tolerance and prevented or reversed the increase in fasting insulin level. Free exposures in plasma and liver at Cmax were 1-4 fold the IC50 for suppression of superoxide/hydrogen peroxide production at site IQ and substantially below levels that inhibit electron flow through complex I. These results show that the production of superoxide/hydrogen peroxide from mitochondrial site IQin vivo is necessary for the induction and maintenance of glucose intolerance caused by a high-fat diet in mice. They raise the possibility that oral administration of S1QELs may be beneficial in metabolic syndrome.


Subject(s)
Metabolic Syndrome , Superoxides , Mice , Male , Animals , Superoxides/metabolism , Hydrogen Peroxide/metabolism , Peroxides , Insulin , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Fasting , Adipose Tissue/metabolism , Glucose
9.
Biochem J ; 480(5): 363-384, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36862427

ABSTRACT

Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.


Subject(s)
Hydrogen Peroxide , Superoxides , Rats , Animals , Superoxides/metabolism , Hydrogen Peroxide/metabolism , NAD/metabolism , Mitochondria/metabolism , Electron Transport , Electron Transport Complex I/metabolism , Electron Transport Complex I/pharmacology
10.
Insects ; 14(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36975933

ABSTRACT

Brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a generalist pest that causes serious injury to a variety of crops around the world. After the first detection in the USA, H. halys became a serious threat to growers resulting in significant crop damage. Understanding the effect of temperature on H. halys development will help to achieve successful control by predicting the phenological timing of the pest. Here, life table parameters (survival, development, reproduction, and daily mortality) of H. halys were evaluated for New Jersey and Oregon populations in the US. Parameters were determined from field-collected and laboratory-reared individuals. The results indicated that New Jersey populations had higher levels of egg-laying than Oregon populations and exhibited higher and earlier fecundity peaks. Survival levels were similar between populations. Linear and nonlinear fit were used to estimate the minimum (14.3 °C), optimal (27.8 °C), and maximum (35.9 °C) temperatures where development of H. halys can take place. An age-specific fecundity peak (Mx = 36.63) was recorded at 936 degree days for New Jersey populations, while maximum fecundity (Mx = 11.85) occurred at 1145 degree days in Oregon. No oviposition was recorded at the lowest (15 °C) or highest (35 °C) trialed temperatures. Developmental periods increased at temperatures above 30 °C, indicating that such higher temperatures are suboptimal for H. halys development. Altogether the most optimal temperatures for population increase (rm) ranged from 25 to 30 °C. Survival rates of H. halys at suboptimal low temperatures of 8 °C (i.e., 61%) is comparable to previous reports. The present paper provides additional data and context from a range of experimental conditions and populations. Such temperature-related H. halys life table parameters can be used to provide determine the risk to susceptible crops.

11.
Environ Pollut ; 327: 121498, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36965684

ABSTRACT

Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 µg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.


Subject(s)
Cladocera , Copepoda , Pesticides , Animals , Ecosystem , Pesticides/toxicity , Temperature , Fresh Water/chemistry , Zooplankton/physiology , Water
12.
Sci Total Environ ; 872: 162177, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36775145

ABSTRACT

In recent years, considerable computational advancements have been made allowing automated analysis of behavioural endpoints using video cameras. However, the results of such analyses are often confounded by a large variation among individuals, making it problematic to derive endpoints that allow distinguishing treatment effects in behavioural studies. In this study, we quantitatively analysed the effects of light conditions on the swimming behaviour of the freshwater amphipod Gammarus pulex by high-throughput tracking, and attempted to unravel among individual variation using size and sex. For this, we developed the R-package Kinematics, allowing for the rapid and reproducible analysis of the swimming behaviour (speed, acceleration, thigmotaxis, curvature and startle response) of G. pulex, as well as any other organism. Our results show a considerable amount of variation among individuals (standard deviation ranging between 5 and 115 % of the average swimming behaviour). The factors size and sex and the interaction between the two only explained a minor part of this found variation. Additionally, our study is the first to quantify the startle response in G. pulex after the light is switched on, and study the variability of this response between individuals. To analyse this startle response, we established two metrics: 1) startle response magnitude (the drop in swimming velocity directly after the light switches on), and 2) startle response duration (the time it takes to recover from the drop in swimming velocity to average swimming speed). Almost 80 % of the individuals showed a clear startle response and, therefore, these metrics demonstrate a great potential for usage in behavioural studies. The findings of this study are important for the development of appropriate experimental set-ups for behavioural experiments with G. pulex.


Subject(s)
Amphipoda , Animals , Humans , Amphipoda/physiology , Swimming , Behavior, Animal , Fresh Water
13.
Glob Chang Biol ; 29(11): 3019-3038, 2023 06.
Article in English | MEDLINE | ID: mdl-36811356

ABSTRACT

Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna. We compared contemporary (2016/17) macroinvertebrate assemblages of formerly perennial streams that became intermittently flowing (since the early 2000s) to assemblages recorded in the same streams by a study conducted pre-drying (1981/82) in the med-climate region of southwestern Australia (the Wungong Brook catchment, SWA), using a multiple before-after, control-impact design. Assemblage composition in the stream reaches that remained perennial changed very little between the studies. In contrast, recent intermittency had a profound effect on species composition in streams impacted by drying, including the extirpation of nearly all Gondwanan relictual insect species. New species arriving at intermittent streams tended to be widespread, resilient species including desert-adapted taxa. Intermittent streams also had distinct species assemblages, due in part to differences in their hydroperiods, allowing the establishment of distinct winter and summer assemblages in streams with longer-lived pools. The remaining perennial stream is the only refuge for ancient Gondwanan relict species and the only place in the Wungong Brook catchment where many of these species still persist. The fauna of SWA upland streams is becoming homogenised with that of the wider Western Australian landscape, as drought-tolerant, widespread species replace local endemics. Flow regime drying caused large, in situ alterations to stream assemblage composition and demonstrates the threat posed to relictual stream faunas in regions where climates are drying.


Subject(s)
Aquatic Organisms , Invertebrates , Rivers , Animals , Australia , Ecosystem , Environmental Monitoring , Global Warming
14.
Anim Nutr ; 11: 160-170, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36254218

ABSTRACT

The large intestinal systems of fowl and swine recover nutrients from ileal indigesta by a strategically different manner. Indigesta with fowl enter a short colon where retro-peristalsis using urine from the urodeum carries small particulates and solutes into both ceca while coarse materials collect in the cloaca. Fowl repetitively add fine and soluble materials into both ceca to continue fermentation until complexity of the remainder exceeds microbial action, then contents apart from faeces are entirely evacuated. Indigesta with swine initially enter a short cecum followed by a lengthy progression through to the rectal ampulla. Wall out-pocketings of circular muscle or haustrae occur throughout the length of the pig's cecum and helicoidal colon. Each pocket carries contents acquired earlier in the cecum. Motility collects fines and solutes into haustrae during their progression through the colon whereas coarse particulates assemble in the core. Haustrae contents continually ferment during movement to the distal colon with resulting volatile fatty acids (VFA) and electrolytes being absorbed. Mucin loosely covers the lumen surface in caeca as well as helicoidal colon that may capture microbes from active intestinal contents as well as release others to sustain fermentation. The microbial community continually modifies to accommodate fibre complexity as encountered. Resistant starches (RS) and simple oligosaccharides rapidly ferment to yield VFA while encouraging butyric acid in the cecum and anterior colon, whereas non-starch polysaccharides (NSP) complexity requires extended durations through the remaining colon that enhance acetic acid. Residual fibre eventually results in undue complexity for fermentation and consolidates at termination of the colon. These compact pellets are placed on core contents to form faeces having a nodular surface. Acetic, propionic, and butyric acids represent the bulk of VFA and are derived from non-digestible carbohydrates. Fibrolytic enzymes, when supplemented to feed, may increase the proportion of oligosaccharides and simpler NSP to further the rate as well as extent of fermentation. Active absorption of VFA by mucosal enterocytes employs its ionized form together with Na+, whereas direct membrane passage occurs when non-dissociated. Most absorbed VFA favour use by the host with a portion of butyric acid together with by-products from protein digestion being retained to reform mucin and sustain mucosal integrity.

15.
J Econ Entomol ; 115(6): 1995-2003, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36209398

ABSTRACT

Spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of thin-skinned fruits in the United States. Monitoring traps are an integral part of SWD integrated pest management, allowing early detection and timely management of this pest. An ideal monitoring trap should be easy to use, effective in capturing SWD, sensitive and selective to male SWD which are easy to identify due to their spotted wings, and able to predict fruit infestation from trap captures. Deli-cup-based liquid traps (grower standard), which make in-situ observations difficult, were compared with red-panel sticky traps, both baited with commercial lures (Scentry, Trécé Broad-Spectrum (BS), and Trécé High-Specificity (HS)), across several US states in blueberries (lowbush and highbush), blackberry, raspberry, and cherry crops during 2018 and 2021. Results showed that red-panel traps effectively captured SWD, were able to detect male SWD early in the season while also being selective to male SWD all season-long, and in some cases linearly related male SWD trap captures with fruit infestation. Scentry and Trécé BS lures captured similar numbers of SWD, though Trécé BS and Trécé HS were more selective for male SWD in red panel traps than liquid traps in some cases. In conclusion, due to its ease of use with less processing time, red-panel traps are promising tools for detecting and identifying male SWD in-situ and for predicting fruit infestation. However, further research is needed to refine the trap captures and fruit infestation relationship and elucidate the trap-lure interactions in berry and cherry crops.


Subject(s)
Blueberry Plants , Rubus , Male , Animals , Drosophila , Fruit , Insect Control/methods , Crops, Agricultural
16.
Water Res ; 226: 119251, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36288666

ABSTRACT

Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Greenhouse Effect , Temperature , Nitrous Oxide/analysis , Carbon Dioxide , Methane/analysis , Soil
17.
Nanoscale Adv ; 4(9): 2057-2076, 2022 May 03.
Article in English | MEDLINE | ID: mdl-36133440

ABSTRACT

Due to the finite nature, health and environmental hazards currently associated with the use of fossil energy resources, there is a global drive to hasten the development and deployment of renewable energy technologies. One such area encompasses perovskite solar cells (PSCs) that have shown photoconversion efficiencies (PCE) comparable to silicon-based photovoltaics, but their commercialisation has been set back by short-term stability and toxicity issues, among others. A tremendous potential to overcome these drawbacks is presented by the emerging applications of graphene derivative-based materials in PSCs as substitutes or components, composites with other functional materials, and enhancers of charge transport, blocking action, exciton dissociation, substrate coverage, sensitisation and stabilisation. This review aims to illustrate how these highly capable carbon-based materials can advance PSCs by critically outlining and discussing their current applications and strategically identifying prospective research avenues. The reviewed works show that graphene derivatives have great potential in boosting the performance and stability of PSCs through morphological modifications and compositional engineering. This can drive the sustainability and commercial viability aspects of PSCs.

18.
Sci Total Environ ; 842: 156689, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35724793

ABSTRACT

Humans have severely altered freshwater ecosystems globally, causing a loss of biodiversity. Regulatory frameworks, like the Water Framework Directive, have been developed to support actions that halt and reverse this loss. These frameworks use typology systems that summarize freshwater ecosystems into environmentally delineated types. Within types, ecosystems that are minimally impacted by human activities, i.e., in reference conditions, are expected to be similar concerning physical, chemical, and biological characteristics. This assumption is critical when water quality assessments rely on comparisons to type-specific reference conditions. Lyche Solheim et al. (2019) developed a pan-European river typology system, the Broad River Types, that unifies the national Water Framework Directive typology systems and is gaining traction within the research community. However, it is unknown how similar biological communities are within these individual Broad River Types. We used analysis of similarities and classification strength analysis to examine if the Broad River Types delineate distinct macroinvertebrate communities across Europe and whether they outperform two ecoregional approaches: the European Biogeographical Regions and Illies' Freshwater Ecoregions. We determined indicator and typical taxa for the types of all three typology systems and evaluated their distinctiveness. All three typology systems captured more variation in macroinvertebrate communities than random combinations of sites. The results were similar among typology systems, but the Broad River Types always performed worse than either the Biogeographic Regions or Illies' Freshwater Ecoregions. Despite reaching statistical significance, the statistics of analysis of similarity and classification strength were low in all tests indicating substantial overlap among the macroinvertebrate communities of different types. We conclude that the Broad River Types do not represent an improvement upon existing freshwater typologies when used to delineate macroinvertebrate communities and we propose future avenues for advancement: regionally constrained types, better recognition of intermittent rivers, and consideration of biotic communities.


Subject(s)
Ecosystem , Rivers , Animals , Biodiversity , Environmental Monitoring/methods , Humans , Invertebrates
19.
HardwareX ; 11: e00307, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35518280

ABSTRACT

Future global climate change with higher mean temperatures and increased intensity and frequency of heatwaves as extreme weather events will affect aquatic ecosystems with, yet, unpredictable severity and consequences. Although models suggest increased risk of species extinction up to the year 2050 for series of different climate change scenarios, environmental complexity may result in unconsidered effects of future temperature alterations on ecosystems. Apart from these environmental changes, additional anthropogenic stressors, e.g. chemical release, may cause unprecedented interaction effects on ecosystems. Ongoing efforts to better understand such temperature-chemical interaction effects comprise almost exclusively experimental designs using constant temperature regimes instead of environmentally realistic daily temperature variations. In this paper we describe an Arduino-based temperature and heatwave control device (TENTACLE) that is transportable, inexpensive, multifunctional, and easily reproducible. TENTACLE offers water temperature monitoring and manipulation of up to 3 different climate change-related scenarios: i) natural (ambient) sinusoidal fluctuations (laboratory applications), ii) elevated fluctuations, and iii) heatwaves as extreme events. The use of replaceable heating elements and low-cost materials suitable for field studies creates a high flexibility for researchers who may conduct in- or out-door, small- or large-scale, fresh- or salt-water experiments at different geographical locations.

20.
PLoS One ; 17(2): e0263899, 2022.
Article in English | MEDLINE | ID: mdl-35213583

ABSTRACT

Progressively more community initiatives have been undertaken over last decades to monitor water quality. Biological data collected by volunteers has been used for biodiversity and water quality studies. Despite the many citizen science projects collecting and using macroinvertebrates, the number of scientific peer-reviewed publications that use this data, remains limited. In 2018, a citizen science project on biological water quality assessment was launched in the Netherlands. In this project, volunteers collect macroinvertebrates from a nearby waterbody, identify and count the number of specimens, and register the catch through a web portal to instantaneously receive a water quality score based on their data. Water quality monitoring in the Netherlands is traditionally the field of professionals working at water authorities. Here, we compare the data from the citizen science project with the data gathered by professionals. We evaluate information regarding type and distribution of sampled waterbodies and sampling period, and compare general patterns in both datasets with respect to collected animals and calculated water quality scores. The results show that volunteers and professionals seldomly sample the same waterbody, that there is some overlap in sampling period, and that volunteers more frequently sampled urban waters and smaller waterbodies. The citizen science project is thus yielding data about understudied waters and this spatial and temporal complementarity is useful. The character and thoroughness of the assessments by volunteers and professionals are likely to differentiate. Volunteers collected significantly lower numbers of animals per sample and fewer animals from soft sediments like worms and more mobile individuals from the open water column such as boatsmen and beetles. Due to the lack of simultaneous observations at various locations by volunteers and professionals, a direct comparison of water quality scores is impossible. However, the obtained patterns from both datasets show that the water quality scores between volunteers and professionals are dissimilar for the different water types. To bridge these differences, new tools and processes need to be further developed to increase the value of monitoring biological water quality by volunteers for professionals.


Subject(s)
Biodiversity , Environmental Monitoring , Volunteers , Water Quality , Citizen Science , Humans , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...