Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 74(3): 1398-405, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8482683

ABSTRACT

We measured abdominal compliance (Cab) and rib cage displacement (delta Vrc) relative to abdominal displacement (delta Vab) during relaxation and tidal breathing in upright (U) and supine (S) postures in five normal subjects. In S, an abdominal binder was used to decrease Cab in two to five increments. We also measured the electrical activity of the parasternal muscle (EMGps) with the use of fine-wire intramuscular electrodes during CO2 rebreathing in U and in supine unbound (SU) and supine bound (SB) postures. During maximum binding (SB2), Cab decreased to 39 +/- 7% of the SU value (P = 0.01), matching Cab in U (P = 0.16). In the SB condition, the ratio of tidal delta Vrc/delta Vab to relaxation delta Vrc/delta Vab increased as Cab decreased, matching the data in U. For the group, this ratio decreased during SU to 47 +/- 10% (P = 0.02) but increased during SB2 to 86 +/- 7% (P = 0.18) of the value in U. During CO2 rebreathing, EMGps increased linearly with tidal volume (r > 0.727, P < 0.01). However, at any given tidal volume, the SU and SB2 EMGps were not significantly different (P = 0.12), and both were less than that in U (P < 0.02). The results suggest that the differences in chest wall motion between U and S may be due to the difference in Cab and not to different patterns of respiratory muscle recruitment. The mechanism may relate to changes in mechanical coupling between the diaphragm and the rib cage.


Subject(s)
Abdominal Muscles/physiology , Thorax/physiology , Diaphragm/physiology , Electrodes , Electromyography , Humans , Models, Biological , Muscles/physiology , Posture/physiology , Regional Blood Flow/physiology , Respiratory Mechanics/physiology , Supine Position/physiology
2.
J Appl Physiol (1985) ; 73(6): 2373-81, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1490946

ABSTRACT

We measured the electromyographic (EMG) activity in four chest wall and trunk (CWT) muscles, the erector spinae, latissimus dorsi, pectoralis major, and trapezius, together with the parasternal, in four normal subjects during graded inspiratory efforts against an occlusion in both upright and seated postures. We also measured CWT EMGs in six seated subjects during inspiratory resistive loading at high and low tidal volumes [1,280 +/- 80 (SE) and 920 +/- 60 ml, respectively]. With one exception, CWT EMG increased as a function of inspiratory pressure generated (Pmus) at all lung volumes in both postures, with no systematic difference in recruitment between CWT and parasternal muscles as a function of Pmus. At any given lung volume there was no consistent difference in CWT EMG at a given Pmus between the two postures (P > 0.09). However, at a given Pmus during both graded inspiratory efforts and inspiratory resistive loading, EMGs of all muscles increased with lung volume, with greater volume dependence in the upright posture (P < 0.02). The results suggest that during inspiratory efforts, CWT muscles contribute to the generation of inspiratory pressure. The CWT muscles may act as fixators opposing deflationary forces transmitted to the vertebral column by rib cage articulations, a function that may be less effective at high lung volumes if the direction of the muscular insertions is altered disadvantageously.


Subject(s)
Respiratory Mechanics/physiology , Respiratory Muscles/physiology , Thorax/physiology , Adult , Airway Resistance/physiology , Electrodes , Electromyography , Female , Gravitation , Humans , Male , Tidal Volume/physiology
3.
J Appl Physiol (1985) ; 73(5): 1720-7, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1474043

ABSTRACT

We compared the O2 cost of breathing (VO2resp) at high levels of ventilation (HV) with that against high inspiratory pressure loads (HP) using an external elastance when end-expiratory volume, work rate (W), and pressure-time product (P) were matched at two levels of ventilation and elastic loading. Each of five normal subjects performed three pairs of loaded runs (one HV and one HP) bracketed by two resting runs. Mean O2 consumption from the pairs of resting runs was subtracted from that of each of the loaded runs to give VO2resp during loaded breathing. Matching for W and P was within 15% in all 15 pairs of runs. During HV runs, ventilation was 398 +/- 24% of corresponding values during HP runs (P < 0.01). Although there was no difference in W (P > 0.05), the VO2resp during HV runs was 237 +/- 33% of that during HP (P < 0.01) and efficiency of HV was 51 +/- 5% of that during HP (P < 0.01). When W was normalized for the decrease in maximum inspiratory pressure with increased mean lung volume, efficiency during HV and HP runs did not differ (P > 0.05). In the second series of experiments, when both HV and HP runs were matched for W but P was allowed to vary, efficiency increased by 1.42 +/- 0.42% (P < 0.05) for each percent decrease in P during HV runs but was unchanged (P > 0.05) during HP runs despite a 193 +/- 10% increase in P.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Air Pressure , Oxygen Consumption/physiology , Work of Breathing/physiology , Adult , Elasticity , Female , Humans , Male , Respiratory Mechanics/physiology , Respiratory Muscles/physiology , Tidal Volume/physiology
4.
J Appl Physiol (1985) ; 71(5): 1956-66, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1761497

ABSTRACT

We studied the effect of 15-20 s of weightlessness on lung, chest wall, and abdominal mechanics in five normal subjects inside an aircraft flying repeated parabolic trajectories. We measured flow at the mouth, thoracoabdominal and compartmental volume changes, and gastric pressure (Pga). In two subjects, esophageal pressures were measured as well, allowing for estimates of transdiaphragmatic pressure (Pdi). In all subjects functional residual capacity at 0 Gz decreased by 244 +/- 31 ml as a result of the inward displacement of the abdomen. End-expiratory Pga decreased from 6.8 +/- 0.8 cmH2O at 1 Gz to 2.5 +/- 0.3 cmH2O at Gz (P less than 0.005). Abdominal contribution to tidal volume increased from 0.33 +/- 0.05 to 0.51 +/- 0.04 at 0 Gz (P less than 0.001) but delta Pga showed no consistent change. Hence abdominal compliance increased from 43 +/- 9 to 70 +/- 10 ml/cmH2O (P less than 0.05). There was no consistent effect of Gz on tidal swings of Pdi, on pulmonary resistance and dynamic compliance, or on any of the timing parameters determining the temporal pattern of breathing. The results indicate that at 0 G respiratory mechanics are intermediate between those in the upright and supine postures at 1 G. In addition, analysis of end-expiratory pressures suggests that during weightlessness intra-abdominal pressure is zero, the diaphragm is passively tensed, and a residual small pleural pressure gradient may be present.


Subject(s)
Respiratory Mechanics/physiology , Weightlessness/adverse effects , Abdomen , Functional Residual Capacity/physiology , Humans , Lung/physiology , Lung Volume Measurements , Male , Posture , Pressure , Thorax , Tidal Volume/physiology
5.
J Appl Physiol (1985) ; 70(5): 1983-90, 1991 May.
Article in English | MEDLINE | ID: mdl-1864778

ABSTRACT

We measured the O2 cost of breathing (VO2resp) against external inspiratory elastic (E) and resistive loads (R) when end-expiratory lung volume, tidal volume, breathing frequency, work rate, and pressure-time product were matched in each of six pairs of runs in six subjects. During E, peak inspiratory mouth pressure was 65.7 +/- 1.8% (SD) of the maximum at functional residual capacity. However, during resistive runs, peak inspiratory mouth pressure was 41.1 +/- 2.8% of the maximum at functional residual capacity. In 36 paired runs, where both work rate and pressure-time product were within 10%, VO2resp for E was less than for R (81 and 96 ml/min, respectively; P less than 0.01). During loaded and unloaded breathing with the same tidal volume, we measured the changes in anteroposterior diameter of the lower rib cage in five subjects. In four subjects we also recorded the electromyograms of several fixator and stabilizing muscles. During E and R, the change in anteroposterior diameter of the lower rib cage was -116 +/- 5 and -45 +/- 4% (SE), respectively, of the unloaded value (P less than 0.01), indicating greater deformation during E. Although the peak electromyographic activity was 72 +/- 16% greater during E (P less than 0.01), there was no difference between the loads for area under the electromyogram time curve (P greater than 0.05). However, the time to 50% peak activity was less during R (P less than 0.02). We conclude that, even when work rate and pressure-time product are matched, VO2resp during R is greater than that during E. This difference may be due to preferential recruitment of faster and less efficient muscle fibers.


Subject(s)
Oxygen Consumption , Respiratory Mechanics/physiology , Adult , Airway Resistance/physiology , Elasticity , Electromyography , Energy Metabolism , Female , Humans , Lung Compliance/physiology , Male , Pressure , Respiratory Muscles/physiology , Work of Breathing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...