Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 248(1): 155-169, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29637263

ABSTRACT

MAIN CONCLUSION: Fourteen new quantitative trait loci (QTLs) and ten favorable alleles were identified for lodging resistance traits in a natural population of rice. Parental combinations were designed to improve lodging resistance. Lodging is one of the most critical constraints to rice yield, and therefore, mining favorable alleles for lodging resistance traits is imperative for the advancement of cultivated rice and selection for market demand. This investigation was performed on a selected sample of 521 rice cultivars using 262 SSR markers in 2016 and 2017. Lodging resistance traits were evaluated by plant height (PH), stem length (SL), stem diameter (SD), anti-thrust per stem (AT/S), and stem index (SI), with AT/S, used as the lodging resistance index. A genome-wide association map was generated by combining phenotypic and genotypic data. Eight subpopulations were found by structure software, and the linkage disequilibrium (LD) ranged from 30 to 80 cM. Identification of 68 marker-trait associations (MTAs) linking in 64 SSR markers for five traits was done. QTL were detected, including 15 for PH, 14 for SL, 14 for SD, 7 for AT/S, and 18 for SI. A number of favorable alleles were also discovered, including 22, 24, 19, 12, and 28 alleles for PH, SL, SD, AT/S, and SI, respectively. These favorable alleles might be used to design parental combinations, and the predictable results found by relieving the favorable alleles per QTL. The accessions containing favorable alleles for lodging resistant traits mined in this study could be useful for breeding superior rice cultivars.


Subject(s)
Alleles , Disease Resistance/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Data Mining , Genetic Association Studies , Genetic Markers/genetics , Genetic Variation/genetics , Linkage Disequilibrium/genetics , Phylogeny
2.
Front Plant Sci ; 7: 787, 2016.
Article in English | MEDLINE | ID: mdl-27375646

ABSTRACT

Mining elite alleles for grain size and weight is of importance for the improvement of cultivated rice and selection for market demand. In this study, association mapping for grain traits was performed on a selected sample of 628 rice cultivars using 262 SSRs. Grain traits were evaluated by grain length (GL), grain width (GW), grain thickness (GT), grain length to width ratio (GL/GW), and 1000-grain weight (TGW) in 2013 and 2014. Our result showed abundant phenotypic and genetic diversities found in the studied population. In total, 2953 alleles were detected with an average of 11.3 alleles per locus. The population was divided into seven subpopulations and the levels of linkage disequilibrium (LD) ranged from 34 to 84 cM. Genome-wide association mapping detected 10 marker trait association (MTAs) loci for GL, 1MTAs locus for GW, 7 MTAs loci for GT, 3 MTAs loci for GL/GW, and 1 MTAs locus for TGW. Twenty-nine, 2, 10, 5, and 3 elite alleles were found for the GL, GW, GT, GL/GW, and TGW, respectively. Optimal cross designs were predicted for improving the target traits. The accessions containing elite alleles for grain traits mined in this study could be used for breeding rice cultivars and cloning the candidate genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...