Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Radiat Isot ; 182: 110141, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35180526

ABSTRACT

The Raman intensity ratio ID/IG for: (a) graphite-rich pencil rods irradiated using x-ray doses up to 20 Gy; (b) a restricted view of the ID/IG response for the same group of media, limited to x-ray doses of no more than 6 Gy; (c1 and c2) an extended group of graphite-rich media irradiated using 60Co gamma-rays; (d) a restricted view of the ID/IG response for a restricted group of the media shown in (c), with 60Co gamma-ray doses limited to no more than 20 Gy; (e) 2B graphite-rich pencil rods irradiated using 6 MeV electrons, and: (f) irradiation of a subset of the media by thermal (0.025 eV) neutrons. The fluctuation of ID/IG with dose for carbon-rich human hair of nominal diameter 60 µm is indicated by the dashed line in (c) and (d). The values in parentheses indicate the percentage carbon content and the surface area-to-volume ratio of samples. The data are a re-organisation of that included in the studies of Abdul Sani et al. (2020, Bradley et al. (2019, 2021), Mat Nawi et al. (2021a,b), and Lam et al. (2021) such as to illustrate three prime dependencies, viz. surface to volume ratio, carbon content, and linear energy transfer, LET. (g) and (h) are combination graphs as indicated in the key to each.

2.
Appl Radiat Isot ; 174: 109769, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34048993

ABSTRACT

Present work builds upon prior investigations concerning the novel use of graphite-rich polymer pencil-lead for passive radiation dosimetry. Working with photon-mediated interactions at levels of dose familiar in radiotherapy, exploratory investigations have now been made using graphite produced commercially in the form of 50 µm thick sheets. Focusing on the relationship between absorbed radiation energy and induced material changes, investigations have been made of thermo- and photoluminescence dose dependence, also of alterations in Raman spectroscopic features. Photoluminescence studies have focused on the degree of structural order of the samples when exposed to incident MeV energy gamma-radiation, supported by crystallite size evaluations. The results are consistent and evident of structural alterations, radiation-driven thermal annealing also being observed. The results, supportive of previous TL, Raman and photoluminescence studies, are readily understood to arise from irradiation changes occurring at the microscopic level. Notwithstanding the non-linearities observed in the conduct of Raman and photoluminescence studies there is clear potential for applications in use of the defect-dependent methods herein, providing sensitive detection of radiation damage in graphite and from it dose determination. Most specifically, the readily available thin graphite sheets can provide the basis of a low-cost yet highly effective system for studies of radiation-driven changes in carbon (and/or carbon based composites), also as a dosimetric probe of skin dose, its atomic number closely matching with the effective atomic number of soft tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...