Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Acquir Immune Defic Syndr ; 94(2S): S42-S46, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37707847

ABSTRACT

BACKGROUND: The Southern region of the United States has the highest HIV incidence, and new infections disproportionately affect Black Americans. The Tennessee Center for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI) program supports the training of individuals from groups underrepresented in medicine and science in multiple areas of research to increase the pool of HIV-focused investigators at early educational and career stages. SETTING: The Tennessee CFAR is a partnership between Vanderbilt University Medical Center, Meharry Medical College (one of the oldest historically Black medical colleges), Tennessee Department of Health, and Nashville Community AIDS Resources, Education and Services (a sophisticated community service organization, which emphasizes research training responsive to regional and national priorities). METHODS: The Tennessee CFAR CDEIPI program leverages existing Vanderbilt University Medical Center and Meharry Medical College structured biomedical training programs for high school and undergraduate students to provide an intensive, mentored, HIV research experience augmented by CFAR resources situating this training within the broader history, scientific breadth, and societal and political aspects of the HIV epidemic. RESULTS: The first year of the Tennessee CFAR CDEIPI program trained 3 high school and 3 undergraduate students from underrepresented in medicine and science backgrounds in basic, clinical/translational, and community-focused research projects with a diverse group of 9 mentors. All students completed the program, and evaluations yielded positive feedback regarding mentoring quality and effectiveness, and continued interest in HIV-related research. CONCLUSIONS: The Tennessee CFAR CDEIPI program will continue to build upon experience from the first year to further contribute to national efforts to increase diversity in HIV-related research.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Humans , Tennessee/epidemiology , HIV Infections/epidemiology , HIV Infections/prevention & control , Schools , Students
2.
PLoS Biol ; 20(8): e3001758, 2022 08.
Article in English | MEDLINE | ID: mdl-35998206

ABSTRACT

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Ethnicity , Feces , Female , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , Virome
3.
Dev Biol ; 471: 119-137, 2021 03.
Article in English | MEDLINE | ID: mdl-33316258

ABSTRACT

Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.


Subject(s)
Gene Expression Regulation, Developmental , Mesoderm/embryology , Neural Crest/embryology , SOXE Transcription Factors/biosynthesis , Skull/embryology , Transgenes , Animals , Mesoderm/cytology , Mice , Mice, Transgenic , Neural Crest/cytology , SOXE Transcription Factors/genetics , Skull/cytology
4.
CBE Life Sci Educ ; 13(2): 297-310, 2014.
Article in English | MEDLINE | ID: mdl-26086660

ABSTRACT

The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals.


Subject(s)
Curriculum , Mathematics/education , Research/education , Schools , Science/education , Students , Awards and Prizes , Demography , Educational Measurement , Engineering/education , Female , Humans , Internet , Male , Surveys and Questionnaires , Technology/education , Tennessee
5.
Hum Mutat ; 32(6): 579-89, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21120950

ABSTRACT

Deficiency of carbamoyl phosphate synthetase I (CPSI) results in hyperammonemia ranging from neonatally lethal to environmentally induced adult-onset disease. Over 24 years, analysis of tissue and DNA samples from 205 unrelated individuals diagnosed with CPSI deficiency (CPSID) detected 192 unique CPS1 gene changes, of which 130 are reported here for the first time. Pooled with the already reported mutations, they constitute a total of 222 changes, including 136 missense, 15 nonsense, 50 changes of other types resulting in enzyme truncation, and 21 other changes causing in-frame alterations. Only ∼10% of the mutations recur in unrelated families, predominantly affecting CpG dinucleotides, further complicating the diagnosis because of the "private" nature of such mutations. Missense changes are unevenly distributed along the gene, highlighting the existence of CPSI regions having greater functional importance than other regions. We exploit the crystal structure of the CPSI allosteric domain to rationalize the effects of mutations affecting it. Comparative modeling is used to create a structural model for the remainder of the enzyme. Missense changes are found to directly correlate, respectively, with the one-residue evolutionary importance and inversely correlate with solvent accessibility of the mutated residue. This is the first large-scale report of CPS1 mutations spanning a wide variety of molecular defects highlighting important regions in this protein.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/diagnosis , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Hyperammonemia/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Codon, Nonsense/genetics , DNA Mutational Analysis , Humans , INDEL Mutation/genetics , Models, Chemical , Mutation, Missense/genetics , Protein Conformation , Protein Isoforms/genetics
6.
Mol Genet Metab ; 81 Suppl 1: S12-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15050969

ABSTRACT

Carbamyl phosphate synthetase I (CPSI) determines the rate-limiting entry of free ammonia into the urea cycle. Disruption of CPSI affects the liver's ability to remove waste nitrogen and produce arginine, citrulline, and urea. Arginine is the necessary precursor for the critical biomolecule, nitric oxide (NO). We have studied the classic model of CPSI deficiency, which results in severe hyperammonemia, and identified a large number of molecular defects. A number of CPSI polymorphisms have been found that appear to result in functional consequences. We have examined the association of these polymorphisms with various environmental stress conditions and found that certain CPSI alleles are associated with clinical outcome. We refer to these associations as environmentally determined genetic expression (EDGE) affects. In addition to studies of classic CPSI deficiency, we have developed data for the EDGE concept in post-cardiac surgery-related pulmonary hypertension, hepatic veno-occlusive disease after bone marrow transplantation, and persistent pulmonary hypertension of the newborn. We have linked these outcomes and genotypes to the availability of the urea cycle intermediates, citrulline and arginine, and their role in NO synthesis. We hypothesize that these polymorphisms affect the functional efficiency of CPSI and thus the entire urea cycle and as such, the availability of the NO substrates. By piecing together the various functional aspects of the urea cycle changes we have seen, we can better understand the clinical vulnerabilities of patients in environmentally stressful situations. This knowledge should allow us to design intervention strategies to either predict or modify the associated adverse outcomes.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Gene Expression , Genetic Variation , Bone Marrow Transplantation , Carbamoyl-Phosphate Synthase (Ammonia)/deficiency , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Chi-Square Distribution , Genotype , Humans , Hypertension, Pulmonary/diagnosis , Infant, Newborn , Models, Biological , Mutation , Nitric Oxide/metabolism
7.
Biochem J ; 369(Pt 1): 17-22, 2003 Jan 01.
Article in English | MEDLINE | ID: mdl-12416993

ABSTRACT

It has recently been shown that adenoviral-mediated expression of peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) in hepatocytes stimulates glucose-6-phosphatase catalytic subunit (G6Pase) gene expression. A combination of fusion gene, gel retardation and chromatin immunoprecipitation assays revealed that, in H4IIE cells, PGC-1 alpha mediates this stimulation through an evolutionarily conserved region of the G6Pase promoter that binds hepatocyte nuclear factor-4 alpha.


Subject(s)
DNA-Binding Proteins , Glucose-6-Phosphatase/metabolism , Phosphoproteins/physiology , Transcription Factors/physiology , Transcription, Genetic/physiology , Animals , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Binding Sites , Catalytic Domain , DNA Primers , Gene Expression Regulation, Enzymologic , Glucose-6-Phosphatase/chemistry , Glucose-6-Phosphatase/genetics , Hepatocyte Nuclear Factor 4 , Mice , Phosphoproteins/metabolism , Precipitin Tests , Promoter Regions, Genetic , Protein Binding , Receptors, Cytoplasmic and Nuclear/metabolism , Sequence Deletion , Transcription Factors/metabolism , Tumor Cells, Cultured
8.
Hum Mutat ; 20(6): 447-51, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12442268

ABSTRACT

The mitochondrial trifunctional protein (TFP) is an enzyme complex of the fatty acid beta-oxidation cycle composed of an alpha- and a beta-subunit. The two encoding genes are located in the same region on chromosome 2 (2p23). TFP deficiency due to either alpha- or beta-subunit mutations is characterized by mutational and phenotypic heterogeneity with severe, early-onset, cardiac forms and milder, later-onset, myopathic phenotypes. In two unrelated patients with lethal TFP deficiency, we delineated apparently homozygous alpha-subunit mutations that were present in heterozygous form in both mothers, but not in either biological father. We performed a microsatellite repeat analysis of both patients and their parents using seven chromosome 2-specific polymorphic DNA markers and four nonchromosome 2 markers. In both patients, two chromosome 2-specific markers demonstrated maternal isodisomy of chromosome 2. The other five chromosome 2-specific markers were noninformative in each patient. Inheritance of alleles from chromosomes 4, 5, and 7 was consistent with paternity. These results explain the apparently anomalous pattern of transmission. Six of our 12 known TFP-deficient patients with alpha-subunit mutations have disease due to homozygous changes and two of them via the mechanism of uniparental disomy (UPD) (16.7%). For very rare autosomal recessive diseases, UPD may represent a common mechanism. This study emphasizes the need to confirm mutations in parents whenever possible. TFP deficiency is another disorder that has become manifest due to isodisomy of chromosome 2. This information will impact genetic counseling for these families, reducing greatly the 25% risk normally used for recessive disorders.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Multienzyme Complexes/deficiency , Uniparental Disomy , Child, Preschool , DNA/chemistry , DNA/genetics , DNA Mutational Analysis , Fatal Outcome , Homozygote , Humans , Male , Microsatellite Repeats , Mitochondrial Trifunctional Protein , Multienzyme Complexes/genetics , Mutation , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...