Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(36): 42622-42636, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37640298

ABSTRACT

The rapidly expanding demand for photovoltaics (PVs) requires stable, quick, and easy to manufacture solar cells based on socioeconomically and ecologically viable earth-abundant resources. Sb2S3 has been a potential candidate for solar PVs and the efficiency of planar Sb2S3 thin-film solar cells has witnessed a reasonable rise from 5.77% in 2014 to 8% in 2022. Herein, the aim is to bring new insight into Sb2S3 solar cell research by investigating how the bulk and surface properties of the Sb2S3 absorber and the current-voltage and deep-level defect characteristics of solar cells based on these films are affected by the ultrasonic spray pyrolysis deposition temperature and the molar ratio of thiourea to SbEX in solution. The properties of the Sb2S3 absorber are characterized by bulk- and surface-sensitive methods. Solar cells are characterized by temperature-dependent current-voltage, external quantum efficiency, and deep-level transient spectroscopy measurements. In this paper, the first thin-film solar cells based on a planar Sb2S3 absorber grown from antimony ethyl xanthate (SbEX) by ultrasonic spray pyrolysis in air are demonstrated. Devices based on the Sb2S3 absorber grown at 200 °C, especially from a solution of thiourea and SbEX in a molar ratio of 4.5, perform the best by virtue of suppressed surface oxidation of Sb2S3, favorable band alignment, Sb-vacancy concentration, a continuous film morphology, and a suitable film thickness of 75 nm, achieving up to 4.1% power conversion efficiency, which is the best efficiency to date for planar Sb2S3 solar cells grown from xanthate-based precursors. Our findings highlight the importance of developing synthesis conditions to achieve the best solar cell device performance for an Sb2S3 absorber layer pertaining to the chosen deposition method, experimental setup, and precursors.

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35055217

ABSTRACT

Extremely thin absorber (ETA) solar cells made of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures, using P3HT as the hole-transporting material (HTM), are of high interest to surpass solar cell efficiencies of their planar counterpart at lower material cost. However, no dimensional optimization has been addressed in detail, as it raises material and technological critical issues. In this study, the thickness of the Sb2S3 shell grown by chemical spray pyrolysis is tuned from a couple of nanometers to several tens of nanometers, while switching from a partially to a fully crystallized shell. The Sb2S3 shell is highly pure, and the unwanted Sb2O3 phase was not formed. The low end of the thickness is limited by challenges in the crystallization of the Sb2S3 shell, as it is amorphous at nanoscale dimensions, resulting in the low optical absorption of visible photons. In contrast, the high end of the thickness is limited by the increased density of defects in the bulk of the Sb2S3 shell, degrading charge carrier dynamics, and by the incomplete immersion of the P3HT in the structure, resulting in the poor hole collection. The best ETA solar cell with a short-circuit current density of 12.1 mA/cm2, an open-circuit voltage of 502 mV, and a photovoltaic conversion efficiency of 2.83% is obtained for an intermediate thickness of the Sb2S3 shell. These findings highlight that the incorporation of both the absorber shell and HTM in the core-shell heterostructures relies on the spacing between individual nanowires. They further elaborate the intricate nature of the dimensional optimization of an ETA cell, as it requires a fine-balanced holistic approach to correlate all the dimensions of all the components in the heterostructures.

3.
Beilstein J Nanotechnol ; 10: 2396-2409, 2019.
Article in English | MEDLINE | ID: mdl-31886116

ABSTRACT

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>105 cm-1 at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380-740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm2 to cm2 areas, the Sb2S3 hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm2 Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.

4.
Beilstein J Nanotechnol ; 10: 198-210, 2019.
Article in English | MEDLINE | ID: mdl-30746313

ABSTRACT

Antimony sulfide (Sb2S3), an environmentally benign material, has been prepared by various deposition methods for use as a solar absorber due to its direct band gap of ≈1.7 eV and high absorption coefficient in the visible light spectrum (1.8 × 105 cm-1 at 450 nm). Rapid, scalable, economically viable and controllable in-air growth of continuous, uniform, polycrystalline Sb2S3 absorber layers has not yet been accomplished. This could be achieved with chemical spray pyrolysis, a robust chemical method for deposition of thin films. We applied a two-stage process to produce continuous Sb2S3 optical coatings with uniform thickness. First, amorphous Sb2S3 layers, likely forming by 3D Volmer-Weber island growth through a molten phase reaction between SbCl3 and SC(NH2)2, were deposited in air on a glass/ITO/TiO2 substrate by ultrasonic spraying of methanolic Sb/S 1:3 molar ratio solution at 200-210 °C. Second, we produced polycrystalline uniform films of Sb2S3 (E g 1.8 eV) with a post-deposition thermal treatment of amorphous Sb2S3 layers in vacuum at 170 °C, <4 × 10-6 Torr for 5 minutes. The effects of the deposition temperature, the precursor molar ratio and the thermal treatment temperature on the Sb2S3 layers were investigated using Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and UV-vis-NIR spectroscopy. We demonstrated that Sb2S3 optical coatings with controllable structure, morphology and optical properties can be deposited by ultrasonic spray pyrolysis in air by tuning of the deposition temperature, the Sb/S precursor molar ratio in the spray solution, and the post-deposition treatment temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...