Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6686): 983-987, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422123

ABSTRACT

Path dependence influences macroevolutionary predictability by constraining potential outcomes after critical evolutionary junctions. Although it has been demonstrated in laboratory experiments, path dependence is difficult to demonstrate in natural systems because of a lack of independent replicates. Here, we show that two types of distributed visual systems recently evolved twice within chitons, demonstrating rapid and path-dependent evolution of a complex trait. The type of visual system that a chiton lineage can evolve is constrained by the number of openings for sensory nerves in its shell plates. Lineages with more openings evolve visual systems with thousands of eyespots, whereas those with fewer openings evolve visual systems with hundreds of shell eyes. These macroevolutionary outcomes shaped by path dependence are both deterministic and stochastic because possibilities are restricted yet not entirely predictable.


Subject(s)
Biological Evolution , Eye , Polyplacophora , Eye/anatomy & histology , Eye/growth & development , Phylogeny , Polyplacophora/anatomy & histology , Polyplacophora/classification , Polyplacophora/growth & development , Animals
2.
Proc Biol Sci ; 289(1972): 20211855, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35382597

ABSTRACT

Transitions to terrestriality have been associated with major animal radiations including land snails and slugs in Stylommatophora (>20 000 described species), the most successful lineage of 'pulmonates' (a non-monophyletic assemblage of air-breathing gastropods). However, phylogenomic studies have failed to robustly resolve relationships among traditional pulmonates and affiliated marine lineages that comprise clade Panpulmonata (Mollusca, Gastropoda), especially two key taxa: Sacoglossa, a group including photosynthetic sea slugs, and Siphonarioidea, intertidal limpet-like snails with a non-contractile pneumostome (narrow opening to a vascularized pallial cavity). To clarify the evolutionary history of the panpulmonate radiation, we performed phylogenomic analyses on datasets of up to 1160 nuclear protein-coding genes for 110 gastropods, including 40 new transcriptomes for Sacoglossa and Siphonarioidea. All 18 analyses recovered Sacoglossa as the sister group to a clade we named Pneumopulmonata, within which Siphonarioidea was sister to the remaining lineages in most analyses. Comparative modelling indicated shifts to marginal habitat (estuarine, mangrove and intertidal zones) preceded and accelerated the evolution of a pneumostome, present in the pneumopulmonate ancestor along with a one-sided plicate gill. These findings highlight key intermediate stages in the evolution of air-breathing snails, supporting the hypothesis that adaptation to marginal zones played an important role in major sea-to-land transitions.


Subject(s)
Gastropoda , Animals , Cell Nucleus , Ecosystem , Gastropoda/genetics , Phylogeny , Snails/genetics
3.
Mol Phylogenet Evol ; 163: 107122, 2021 10.
Article in English | MEDLINE | ID: mdl-33610646

ABSTRACT

The molluscan class Gastropoda includes over 5,000 parasitic species whose evolutionary origins remain poorly understood. Marine snails of the genus Caledoniella (Caledoniellidae) are obligate parasites that live on the abdominal surface of the gonodactylid mantis shrimps. They have highly modified morphological characteristics specialized to the ectoparasitic lifestyle that make it difficult to infer their close relatives, thereby posing a question about their current systematic position in the superfamily Vanikoroidea. In the present study, we performed molecular phylogenetic analyses using three nuclear and three mitochondrial gene sequences to unveil the phylogenetic position of these enigmatic snails. The resulting trees recovered Caledoniella in the superfamily Truncatelloidea and within a subclade of commensal species that live on the burrow wall of marine benthic invertebrates. More specifically, Caledoniella formed the sister clade to a commensal snail species living in mantis-shrimp burrows and they collectively were sister to Sigaretornus planus (formerly in the family Tornidae or Vitrinellidae), a commensal living in echiuran burrows. This topology suggests that the species of Caledoniella achieved their ectoparasitic mode of life through the following evolutionary pathway: (1) invasion into the burrows of benthic invertebrates, (2) specialization to mantis shrimps, and (3) colonization of the host body surface from the host burrow wall with the evolution of the parasitic nature. The final step is likely to have been accompanied by the acquisition of a sucker on the metapodium, the loss of the radula and operculum, and the formation of monogamous pair bonds. The present molecular phylogeny also suggested parallel evolution of planispiral shells in a subclade of Truncatelloidea and enabled us to newly redefine the families Caledoniellidae, Elachisinidae, Teinostomatidae, Tornidae and Vitrinellidae.


Subject(s)
Parasites , Animals , Humans , Invertebrates , Phylogeny , Snails/genetics , Symbiosis
4.
Mol Biol Evol ; 38(2): 424-436, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32915992

ABSTRACT

Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains-α, ß1, ß2, ß3, γ, and δ-in a lineage-specific manner. We have functionally characterized the Neritimorpha ß3ß1 and the Patellogastropoda γß1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.


Subject(s)
Evolution, Molecular , Gastropoda/genetics , Metallothionein/genetics , Animals , Phylogeny , Protein Domains
5.
BMC Evol Biol ; 20(1): 22, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024460

ABSTRACT

BACKGROUND: Polyplacophora, or chitons, have long fascinated malacologists for their distinct and rather conserved morphology and lifestyle compared to other mollusk classes. However, key aspects of their phylogeny and evolution remain unclear due to the few morphological, molecular, or combined phylogenetic analyses, particularly those addressing the relationships among the major chiton lineages. RESULTS: Here, we present a mitogenomic phylogeny of chitons based on 13 newly sequenced mitochondrial genomes along with eight available ones and RNAseq-derived mitochondrial sequences from four additional species. Reconstructed phylogenies largely agreed with the latest advances in chiton systematics and integrative taxonomy but we identified some conflicts that call for taxonomic revisions. Despite an overall conserved gene order in chiton mitogenomes, we described three new rearrangements that might have taxonomic utility and reconstructed the most likely scenario of gene order change in this group. Our phylogeny was time-calibrated using various fossils and relaxed molecular clocks, and the robustness of these analyses was assessed with several sensitivity analyses. The inferred ages largely agreed with previous molecular clock estimates and the fossil record, but we also noted that the ambiguities inherent to the chiton fossil record might confound molecular clock analyses. CONCLUSIONS: In light of the reconstructed time-calibrated framework, we discuss the evolution of key morphological features and call for a continued effort towards clarifying the phylogeny and evolution of chitons.


Subject(s)
Genome, Mitochondrial , Polyplacophora/classification , Polyplacophora/genetics , Animals , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Evolution, Molecular , Fossils , Gene Order , Genome, Mitochondrial/genetics , Mollusca/classification , Mollusca/genetics , Phylogeny , Sequence Analysis, DNA/methods
6.
J Fish Biol ; 95(4): 999-1012, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31192446

ABSTRACT

Analyses of mitochondrial DNA and morphological variation were performed on specimens of all five currently recognised Syngnathus pipefish species from the eastern Pacific Ocean with type localities currently considered to lie within the Californian marine biogeographic province: kelp pipefish Syngnathus californiensis, bay pipefish S. leptorhynchus, barred pipefish S. auliscus, barcheek pipefish S. exilis and chocolate pipefish S. euchrous. Results consistently differentiate S. auliscus from the other species and fail to distinguish all other specimens as distinct species, as indicated by extensive morphological overlap as well as incomplete lineage sorting and considerably low genetic divergence for 16s and coI genes(<1%). This study presents a taxonomic revision of eastern Pacific Syngnathus spp. and proposes the synonymy of S. leptorhynchus, S. euchrous and S. exilis, under the senior synonym, S. californiensis. There is still a need to study populations of Syngnathus spp. from north and south of the Californian province to assess whether these too are synonyms of the two-species recognised here.


Subject(s)
DNA, Mitochondrial/genetics , Phylogeny , Smegmamorpha/genetics , Animals , Pacific Ocean , Smegmamorpha/anatomy & histology , Species Specificity
7.
Curr Biol ; 21(8): 665-70, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21497091

ABSTRACT

Hundreds of ocelli are embedded in the dorsal shell plates of certain chitons. These ocelli each contain a pigment layer, retina, and lens, but it is unknown whether they provide chitons with spatial vision. It is also unclear whether chiton lenses are made from proteins, like nearly all biological lenses, or from some other material. Electron probe X-ray microanalysis and X-ray diffraction revealed that the chiton Acanthopleura granulata has the first aragonite lenses ever discovered. We found that these lenses allow A. granulata's ocelli to function as small camera eyes with an angular resolution of about 9°-12°. Animals responded to the sudden appearance of black, overhead circles with an angular size of 9°, but not to equivalent, uniform decreases in the downwelling irradiance. Our behavioral estimates of angular resolution were consistent with estimates derived from focal length and receptor spacing within the A. granulata eye. Behavioral trials further indicated that A. granulata's eyes provide the same angular resolution in both air and water. We propose that one of the two refractive indices of the birefringent chiton lens places a focused image on the retina in air, whereas the other does so in water.


Subject(s)
Calcium Carbonate/chemistry , Photoreceptor Cells, Invertebrate/chemistry , Polyplacophora/physiology , Polyplacophora/ultrastructure , Animals , Electron Probe Microanalysis , Eye/chemistry , Eye/ultrastructure , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/ultrastructure , Polyplacophora/chemistry , Refraction, Ocular , Refractometry , Vision, Ocular , X-Ray Diffraction
8.
Evolution ; 61(3): 700-7, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17348933

ABSTRACT

In recent years population genetics and phylogeographic studies have become increasingly valuable tools for inferring both historical and present-day genetic patterns within marine species. Here, we take a comparative approach to population-level study, analyzing original mitochondrial DNA data from 969 individuals representing 28 chiton (Mollusca: Polyplacophora) species to uncover large-scale genetic patterns along the Pacific coast of North America. The data reveal a distinct latitudinal connectivity gradient among chitons: species that exist at lower latitudes tend to have more isolated populations. This trend appears to be a product of between-species differences; within species, no significant gradient in connectivity is observed. Lower average annual sea surface temperatures are hypothesized to contribute to longer larval duration (and by extension, greater connectivity) among lecithotrophic species, providing a mechanism for the observed positive correlation between gene flow and latitude. Because increased isolation among populations may lead to speciation, a latitudinal trend in gene flow may contribute to the increased species diversity observed at lower latitudes.


Subject(s)
Gene Flow , Geography , Polyplacophora/genetics , Alaska , Animals , California , DNA, Mitochondrial/chemistry , Oceans and Seas , Polyplacophora/physiology , Regression Analysis , Sequence Analysis, DNA , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...