Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 223: 616-627, 2019 May.
Article in English | MEDLINE | ID: mdl-30798057

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and heavy metals are dangerous pollutants that commonly co-occur in water. An adsorption study conducted on the simultaneous removal of PAHs (acenaphthylene, phenanthrene) and heavy metals (Cd, Cu, Zn) by granular activated carbon (GAC) showed that, when these pollutants are present together, their adsorption was less than when they were present individually. The adsorptive removal percentage of PAHs (initial concentration 1 mg/L) was much higher than that of heavy metals (initial concentration (20 mg/L). The reduction in adsorption of PAHs by heavy metals followed the heavy metals' adsorption capacity and reduction in the negative zeta potential of GAC order (Cu > Zn > Cd). In contrast, PAHs had little effect on the zeta potential of GAC. The Langmuir adsorption capacities of acenaphthylene (0.31-2.63 mg/g) and phenanthrene (0.74-7.36 mg/g) on GAC decreased with increased metals' concentration with the reduction following the order of the metals' adsorption capacity. The kinetic adsorption data fitted to Weber and Morris plots, indicating intra-particle diffusion of both PAHs and heavy metals into the mesopores and micropores in GAC with the diffusion rates. This depended on the type of PAH and metal and whether the pollutants were present alone or together.


Subject(s)
Metals, Heavy/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Adsorption , Water/analysis
2.
Environ Sci Pollut Res Int ; 25(14): 13511-13524, 2018 May.
Article in English | MEDLINE | ID: mdl-29492819

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log Kow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.


Subject(s)
Charcoal/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water/chemistry , Adsorption , Diffusion , Kinetics , Models, Chemical , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...