Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525505

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted between pigs and humans on farms. Hence, the reduction of MRSA carriage in pigs could decrease the risk of zoonotic transmission. Recently, straw bedding has been found to significantly reduce MRSA carriage in pigs. The mechanisms behind this effect remain unclear but changes in the nasal microbiome may play a role. In this exploratory study, the nasal microbiota of pigs kept on straw was examined using V1/V2 16S rRNA gene sequencing. Nasal swabs were collected from 13 pigs at six different time points during the course of a full fattening cycle resulting in 74 porcine samples. In addition, straw samples were collected at each time point. Eleven out of 13 pigs were MRSA positive at housing-in. We found a strong temporal pattern in the microbial communities. Both microbial diversity and abundance of Staphylococcus species peaked in week 5 after introduction to the straw stable decreased in week 10, when all pigs turned MRSA-negative, and increased again toward the end of the fattening period. These findings show that the introduction of pigs into a new environment has a huge impact on their nasal microbiota, which might lead to unfavorable conditions for MRSA. Moreover, other Staphylococcus species may play a role in eliminating MRSA carriage. We designed a follow-up study including two different husbandry systems to further assess these effects.

2.
Front Microbiol ; 14: 1183984, 2023.
Article in English | MEDLINE | ID: mdl-37346748

ABSTRACT

Introduction: The emergence of carbapenem-resistant bacteria causing serious infections may lead to more frequent use of previously abandoned antibiotics like colistin. However, mobile colistin resistance genes (mcr) can jeopardise its effectiveness in both human and veterinary medicine. In Germany, turkeys have been identified as the food-producing animal most likely to harbour mcr-positive colistin-resistant Enterobacterales (mcr-Col-E). Therefore, the aim of the present study was to assess the prevalence of both mcr-Col-E and carbapenemase-producing Enterobacterales (CPE) in German turkey herds and humans in contact with these herds. Methods: In 2018 and 2019, 175 environmental (boot swabs of turkey faeces) and 46 human stool samples were analysed using a combination of enrichment-based culture, PCR, core genome multilocus sequence typing (cgMLST) and plasmid typing. Results: mcr-Col-E were detected in 123 of the 175 turkey farms in this study (70.3%). mcr-Col-E isolates were Escherichia coli (98.4%) and Klebsiella spp. (1.6%). Herds that had been treated with colistin were more likely to harbour mcr-Col-E, with 82.2% compared to 66.2% in untreated herds (p = 0.0298). Prevalence also depended on husbandry, with 7.1% mcr-Col-E in organic farms compared to 74.5% in conventional ones (p < 0.001). In addition, four of the 46 (8.7%) human participants were colonised with mcr-Col-E. mcr-Col-E isolates from stables had minimum inhibitory concentrations (MICs) from 4 to ≥ 32 mg/l, human isolates ranged from 4 to 8 mg/l. cgMLST showed no clonal transmission of isolates. For one farm, plasmid typing revealed great similarities between plasmids from an environmental and a human sample. No CPE were found in turkey herds or humans. Discussion: These findings confirm that mcr-Col-E-prevalence is high in turkey farms, but no evidence of direct zoonotic transmission of clonal mcr-Col-E strains was found. However, the results indicate that plasmids may be transmitted between E. coli isolates from animals and humans.

3.
Curr Microbiol ; 80(1): 37, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36526801

ABSTRACT

Clostridioides difficile infection (CDI) often manifests as diarrhea, particularly in adults of older age or with underlying comorbidities. However, only severe cases are notifiable in Germany. Moreover, failure to collect a stool specimen from inpatients with diarrhea or incomplete testing may lead to underdiagnosis and underreporting of CDI. We assessed the frequency of diarrhea, stool specimen collection, and CDI testing to estimate CDI underdiagnosis and underreporting among hospitalized adults. In a ten-day point-prevalence study (2019-2021) of nine hospitals in a defined area (Muenster/Coesfeld, North Rhine-Westphalia, Germany), all diarrhea cases (≥ 3 loose stools in 24 h) among adult inpatients were captured via medical record screening and nurse interviews. Patient characteristics, symptom onset, putative origin, antibiotic consumption, and diagnostic stool sampling were collected in a case report form (CRF). Diagnostic results were retrieved from the respective hospital laboratories. Among 6998 patients screened, 476 (7%) diarrhea patients were identified, yielding a hospital-based incidence of 201 cases per 10,000 patient-days. Of the diarrheal patients, 186 (39%) had a stool sample collected, of which 160 (86%) were tested for CDI, meaning that the overall CDI testing rate among diarrhea patients was 34%. Toxigenic C. difficile was detected in 18 (11%) of the tested samples. The frequency of stool specimen collection and CDI testing among hospitalized diarrhea patients was suboptimal. Thus, CDI incidence in Germany is likely underestimated. To assess the complete burden of CDI in German hospitals, further investigations are needed.


Subject(s)
Clostridioides difficile , Clostridium Infections , Adult , Humans , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Diarrhea/diagnosis , Diarrhea/epidemiology , Feces , Specimen Handling
4.
One Health ; 13: 100354, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934795

ABSTRACT

The treatment of infections due to colistin-resistant (Col-E) and carbapenemase-producing (CPE) Enterobacterales challenges clinicians both in human and veterinary medicine. Preventing zoonotic transmission of these multidrug-resistant bacteria is a Public Health priority. This study investigates the prevalence of Col-E and CPE on 81 pig farms in North-West Germany as well as among 138 directly exposed humans working on these farms. Between March 2018 and September 2020, 318 samples of porcine feces were taken using boot swabs. Farm workers provided a stool sample. Both a selective culture-based approach and a molecular detection of colistin (mcr-1 to mcr-5) and carbapenem resistance determinants (bla OXA-48/bla VIM/bla KPC/bla NDM) was used to screen all samples. Isolates from farm workers and farms were compared using core genome multilocus-sequence typing (cgMLST) and plasmid-typing. CPE were cultured neither from porcine feces nor from human stool samples. In one stool sample, bla OXA-48 was detected, but no respective CPE isolate was found. Col-E were found in 18/318 porcine (5.7%) samples from 10/81 (12.3%) farms and 2/138 (1.4%) farmers, respectively. All Col-E isolates were Escherichia coli harboring mcr-1. Both farm workers colonized with Col-E worked on farms where no Col-E were detected in porcine samples. In conclusion, CPE were absent on German pig farms. This supports findings of culture-based national monitoring systems and provides evidence that even when improving the diagnostic sensitivity by using molecular detection techniques in addition to culture, CPE are not prevalent. Col-E were prevalent in porcine feces despite a recent decrease in colistin usage among German livestock and absence of colistin treatments on the sampled farms. Farmers carried Col-E, but zoonotic transmission was not confirmed.

5.
Antibiotics (Basel) ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081274

ABSTRACT

The surveillance of antimicrobial resistance among humans and food-producing animals is important to monitor the zoonotic transmission of multidrug-resistant bacteria (MDRB). We assessed the prevalence of four MDRB within the meat production chain, including extended-spectrum ß-lactamase (ESBL)-producing, carbapenemase-producing Enterobacterales (CPE) and colistin-resistant Enterobacterales (Col-E), as well as vancomycin-resistant enterococci (VRE). In total, 505 samples from four stages of meat production, i.e., slaughterhouses, meat-processing plants, fresh food products and the urban environment, were collected in northwestern Germany in 2018/2019 and screened for the presence of MDRB using both culture-based and PCR-based techniques. We detected genes encoding for carbapenemases in 9-56% (blaOXA-48, blaKPC, blaNDM, blaVIM) and colistin resistance-encoding mcr genes in 9-26% of the samples from all stages. Culture-based analysis found CPE and VRE only in environmental samples (11% and 7%, respectively), but Col-E and ESBL-producers in 1-7% and 12-46% of samples from all stages, respectively. Overall, our results showed that ESBL-producers and mcr-carrying Col-E were common in food-producing animals at slaughterhouses, in meat-processing plants and in food items at retail, while CPE and VRE were only found in the environment. The discrepancy between detected carbapenemase genes and isolated CPE emphasizes the need for more sensitive detection methods for CPE monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...