Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychopharmacol ; 33(7): 908-918, 2019 07.
Article in English | MEDLINE | ID: mdl-31081443

ABSTRACT

BACKGROUND: Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood. AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus. METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats. RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine. CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.


Subject(s)
Maze Learning/drug effects , Secologanin Tryptamine Alkaloids/toxicity , Spatial Learning/drug effects , Synaptic Transmission/drug effects , Animals , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation , Male , Mitragyna/chemistry , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Secologanin Tryptamine Alkaloids/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...