Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(18): 4928-4932, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38686678

ABSTRACT

Metal-support interactions, which are essential for the design of supported metal catalysts, used, e.g., for CO2 activation, are still only partially understood. In this study of gold-loaded In2O3 and CeO2 catalysts during CO2 hydrogenation using near-ambient pressure X-ray photoelectron spectroscopy, supported by near edge X-ray absorption fine structure, we demonstrate that the role of the noble metal strongly depends upon the choice of the support material. Temperature-dependent analyses of X-ray photoelectron spectra under reaction conditions reveal that gold is reduced on CeO2, enabling direct H2 activation, but oxidized on In2O3, leading to decreased activity of Au/In2O3 compared to bare In2O3. At elevated temperatures, the catalytic activity of the In2O3 catalysts strongly increases as a result of facilitated CO2 and (In2O3-based) H2 activation, while the catalytic activity of Au/CeO2 is limited by reoxidation by CO2. Our results underline the importance of operando studies for understanding metal-support interactions to enable a rational support selection in the future.

2.
J Am Chem Soc ; 146(11): 7386-7399, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38459944

ABSTRACT

In situ tender X-ray absorption near-edge structure (XANES) spectroscopy at the P K-edge was utilized to investigate the oxidation mechanism of aqueous H3PO3 on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous H3PO3 via H2O yielding H3PO4 and H2. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous H3PO3 oxidation mechanism. In situ XANES studies of aqueous 5 mol dm-3 H3PO3 on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous H3PO3 to H3PO4. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with H2O, as further supported by XANES measurements of aqueous H3PO3 of different concentrations, showing a more pronounced oxidation in electrolytes with a higher H2O content. The significant role of water in the oxidation of H3PO3 to H3PO4 supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by H3PO3 during HT-PEMFC operation.

3.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836313

ABSTRACT

The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO2 (Co/TiO2) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis. Although it is widely acknowledged that Co/TiO2 is restructured during the reaction process, little is known about the impact of the specific gas phase environment at the material's surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate in situ Co particles supported on pure and NaBH4-modified TiO2 under H2, O2, and CO2:H2 gas atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for simultaneous probing of the chemical composition of surface and subsurface layers, is one of the study's unique features. It is shown that under H2, cobalt particles are encapsulated below a stoichiometric TiO2 layer. This arrangement is preserved under CO2 hydrogenation conditions (i.e., CO2:H2), but changes rapidly upon exposure to O2. The pretreatment of the TiO2 support with NaBH4 affects the surface mobility and prevents TiO2 spillover onto Co particles.

4.
Proc Natl Acad Sci U S A ; 117(40): 24764-24770, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32958669

ABSTRACT

In the high spin-orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

5.
Phys Chem Chem Phys ; 21(20): 10635-10643, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31080986

ABSTRACT

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...