Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(51): e1803627, 2018 12.
Article in English | MEDLINE | ID: mdl-30427575

ABSTRACT

This article reports on a fiber-based ratiometric optical pH sensor for use in real-time and continuous in vivo pH monitoring in human tissue. Stable hybrid sol-gel-based pH sensing material is deposited on a highly flexible plastic optical fiber tip and integrated with excitation and detection electronics. The sensor is extensively tested in a laboratory environment before it is applied in vivo in a human model. The pH sensor performance in the laboratory environment outperforms the state-of-the-art reported in the current literature. It exhibits the highest sensitivity in the physiological pH range, resolution of 0.0013 pH units, excellent sensor to sensor reproducibility, long-term stability, short response time of <2 min, and drift of 0.003 pH units per 22 h. The sensor also exhibits promising performance in in vitro whole blood samples. In addition, human evaluations conducted under this project demonstrate successful short-term deployment of this sensor in vivo.


Subject(s)
Fiber Optic Technology/methods , Optical Fibers , Humans , Hydrogen-Ion Concentration
2.
Anal Chem ; 89(14): 7447-7454, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28640594

ABSTRACT

Organic and printed electronics integration has the potential to revolutionize many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon integrated circuits via pick and place or using organic electronic circuits. The device was capable of measuring 8 µL samples of both hydrogen peroxide (0-5 mM, 2.72 × 10-6 A·mM-1) and total cholesterol in serum from 0 to 9 mM (1.34 × 10-8 A·mM-1, r2 = 0.99, RSD < 10%, n = 3), and the result was output on a semiquantitative linear bar display. The device could operate for 10 min via a printed battery, and display the result for many hours or days. A mobile phone "app" was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.


Subject(s)
Biomedical Technology , Electrochemical Techniques , Electronics , Printing , Cholesterol/blood , Electric Power Supplies , Electrodes , Humans , Hydrogen Peroxide/analysis
3.
Anal Bioanal Chem ; 408(24): 6581-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27311950

ABSTRACT

The coagulation of blood plasma in response to activation with a range of tissue factor (TF) concentrations was studied with a quartz crystal microbalance (QCM), where frequency and half width at half maximum (bandwidth) values measured from the conductance spectrum near resonant frequency were used. Continuous measurement of bandwidth along with the frequency allows for an understanding of the dissipative nature of the forming viscoelastic clot, thus providing information on the complex kinetics of the viscoelastic changes occurring during the clot formation process. Using a mathematical model, these changes in frequency and bandwidth have been used to derive novel QCM parameters of effective elasticity, effective mass density and rigidity factor of the viscoelastic layer. The responses of QCM were compared with those from thromboelastography (TEG) under identical conditions. It was demonstrated that the nature of the clot formed, as determined from the QCM parameters, was highly dependent on the rate of clot formation resulting from the TF concentration used for activation. These parameters could also be related to physical clot characteristics such as fibrin fibre diameter and fibre density, as determined by scanning electron microscopic image analysis. The maximum amplitude (MA) as measured by TEG, which purports to relate to clot strength, was unable to detect these differences.


Subject(s)
Blood Coagulation , Thromboplastin/metabolism , Blood Viscosity , Elasticity , Fibrin/metabolism , Fibrin/ultrastructure , Humans , Plasma/metabolism , Quartz Crystal Microbalance Techniques , Thrombelastography
4.
J Biomech ; 46(3): 437-42, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23146323

ABSTRACT

Blood is a clinically-important analytical matrix that is routinely selected for disease monitoring. Having a clear understanding of the mechanisms involved in blood coagulation is a key consideration in haemostasis, with modern clinical practices requiring rapid, miniaturised and informative diagnostic platforms to reliably study changes in viscoelasticity (VE). Oscillatory transducers such as the Quartz Crystal Microbalance (QCM) have considerable potential in this area, provided that they present simple, linear rheometric readings which can be adequately analysed and interpreted. Hence, integrating QCM data obtained in the laboratory with mathematical modelling of acoustic interactions between quartz crystal surfaces and coagulating blood is an important consideration for modelling thrombus formation. Here, we provide a comprehensive overview of experimental and theoretical applications currently being employed to monitor and model the VE properties of coagulating blood when applied to a QCM resonator, with key emphasis on data modelling and interpretation.


Subject(s)
Blood Coagulation , Blood Viscosity , Models, Cardiovascular , Quartz Crystal Microbalance Techniques/methods , Thrombosis/physiopathology , Animals , Humans , Quartz Crystal Microbalance Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...