Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 20(11): 2561-71, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11699783

ABSTRACT

The estimation of chemical concentrations in wildlife foods, such as plant foliage, is often performed for risk assessments at contaminated sites. Regression models and uptake factors for use in estimating the uptake of inorganic elements from soil by above-ground plant tissues were derived in this study. These included models for arsenic, cadmium, copper, lead, mercury, nickel. selenium, and zinc. Models were developed using published data from soil contaminated in the field and were validated using measured concentrations from two contaminated sites. Single-variable regression models of log-transformed concentrations in plants versus log-transformed concentrations in soil are generally recommended over simple uptake factors for use in estimating plant uptake of inorganic contaminants in ecological risk assessments. Multiple regression models with soil concentration and pH as the variables are also recommended for estimating the uptake of four chemicals (cadmium, mercury, selenium, and zinc) by plants. Models for use in screening risk assessments, i.e., the upper 95% prediction limits on the regressions, are recommended to provide conservative estimates of uptake of inorganic chemicals by plants.


Subject(s)
Metals, Heavy/pharmacokinetics , Models, Theoretical , Plant Leaves/chemistry , Soil Pollutants/pharmacokinetics , Regression Analysis , Risk Assessment , Tissue Distribution
2.
Sci Total Environ ; 274(1-3): 219-30, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11453299

ABSTRACT

Hazardous air pollutants, some of which have the potential for multimedia distribution, raise several hurdles for ecological risk assessment including: (1) the development of an adequate transport, fate and exposure model; and (2) the selection of exposure-response models that can accommodate multiple exposure routes for ecological receptors. To address the first issue, the EPA Office of Air Quality Planning and Standards has developed TRIM.FaTE, a mass-balance, fate, transport, and ecological exposure model that is a component of the Total Risk Integrated Methodology (TRIM) for air pollutants. In addition to abiotic transfers and transformations, TRIM.FaTE estimates the uptake of a chemical by terrestrial and aquatic organisms with time. Measures of exposure that TRIM.FaTE can provide include: (1) body burdens or tissue concentrations; (2) doses averaged over any time period; or (3) concentrations of chemicals in abiotic media. The model provides the user with the flexibility to choose the exposure-response thresholds or dose-response relationships that are best suited to data availability, routes of exposure, and the mechanism of toxicity of the chemical to an ecological receptor. One of the challenges of incorporating TRIM.FaTE into a risk assessment methodology lies in defining a streamlined model simulation scenario for initial screening-level risk assessments. These assessments may encompass multiple facilities that emit a variety of pollutants near diverse ecosystems. The information on ecological risk assessment methodology that is described is applicable to the EPA Residual Risk Program with emphasis on multimedia pollutants and the role of TRIM.FaTE.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure , Environmental Health , Environmental Monitoring/methods , Hazardous Substances/toxicity , Animals , Environmental Exposure/legislation & jurisprudence , Environmental Monitoring/legislation & jurisprudence , Humans , Models, Biological , Risk Assessment , United States , United States Environmental Protection Agency
3.
Risk Anal ; 21(2): 251-62, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11414535

ABSTRACT

An ecological risk assessment framework for low-altitude aircraft overflights was developed, with special emphasis on military applications. The problem formulation and exposure analysis phases are presented in this article; an analysis of effects and risk characterization is presented in a companion article. The intent of this article is threefold: (1) to illustrate the development of a generic framework for the ecological risk assessment of an activity, (2) to show how the U.S. Environmental Protection Agency's ecological risk assessment paradigm can be applied to an activity other than the release of a chemical, and (3) to provide guidance for the assessment of ecological risks from low-altitude aircraft overflights. The key stressor for low-altitude aircraft overflights is usually sound, although visual and physical (collision) stressors may also be significant. Susceptible and regulated wildlife populations are the major assessment endpoint entities, although plant communities may be impacted by takeoffs and landings. The exposure analysis utilizes measurements of wildlife locations, measurements of sound levels at the wildlife locations, measurements of slant distances from aircraft to wildlife, models that extrapolate sound from the source aircraft to the ground, and bird-strike probability models. Some of the challenges to conducting a risk assessment for aircraft overflights include prioritizing potential stressors and endpoints, choosing exposure metrics that relate to wildlife responses, obtaining good estimates of sound or distance, and estimating wildlife locations.


Subject(s)
Aircraft , Ecosystem , Altitude , Animals , Environmental Exposure , Humans , Military Science , Models, Theoretical , Risk Assessment
4.
Risk Anal ; 21(2): 263-74, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11414536

ABSTRACT

An ecological risk assessment framework for aircraft overflights has been developed, with special emphasis on military applications. This article presents the analysis of effects and risk characterization phases; the problem formulation and exposure analysis phases are presented in a companion article. The framework addresses the effects of sound, visual stressors, and collision on the abundance and production of wildlife populations. Profiles of effects, including thresholds, are highlighted for two groups of endpoint species: ungulates (hoofed mammals) and pinnipeds (seals, sea lions, walruses). Several factors complicate the analysis of effects for aircraft overflights. Studies of the effects of aircraft overflights previously have not been associated with a quantitative assessment framework; therefore no consistent relations between exposure and population-level response have been developed. Information on behavioral effects of overflights by military aircraft (or component stressors) on most wildlife species is sparse. Moreover, models that relate behavioral changes to abundance or reproduction, and those that relate behavioral or hearing effects thresholds from one population to another are generally not available. The aggregation of sound frequencies, durations, and the view of the aircraft into the single exposure metric of slant distance is not always the best predictor of effects, but effects associated with more specific exposure metrics (e.g., narrow sound spectra) may not be easily determined or added. The weight of evidence and uncertainty analyses of the risk characterization for overflights are also discussed in this article.


Subject(s)
Aircraft , Ecosystem , Altitude , Animals , Animals, Wild , Behavior, Animal , Environmental Exposure , Military Science , Models, Biological , Risk Assessment , Stress, Physiological
7.
Appl Environ Microbiol ; 57(5): 1441-7, 1991 May.
Article in English | MEDLINE | ID: mdl-16348485

ABSTRACT

An Arthrobacter strain mineralized naphthalene and n-hexadecane dissolved in 2,2,4,4,6,8,8-heptamethylnonane. The extent of mineralization increased with greater volumes of solvent. Measurements under aseptic conditions of the partitioning of naphthalene into the aqueous phase from the solid phase or from heptamethylnonane showed that the rates were rapid and did not limit mineralization. The rate of mineralization of hexadecane was rapid, although partitioning of the compound into aqueous solution was not detected. The Arthrobacter sp. grown in media with or without heptamethylnonane did not excrete products that increased the aqueous solubility of naphthalene and hexadecane. Measurements of the number of cells in the aqueous phase showed that the Arthrobacter sp. attached to the heptamethylnonane-water interface, but attachment was evident even without a substrate in the heptamethylnonane. Tests with small inocula of the Arthrobacter sp. demonstrated that at least a portion of naphthalene or hexadecane dissolved in heptamethylnonane was degraded by cells attached to the solvent-water interface. The cells did not adhere in the presence of 0.1% Triton X-100. The surfactant prevented mineralization of the hexadecane initially dissolved in heptamethylnonane, but it increased the rate and extent of mineralization of naphthalene initially dissolved in heptamethylnonane. The data show that organic solvents into which hydrophobic compounds partition affect the biodegradation of those compounds and that attachment of microorganisms to the organic solvent-water interface may be important in the transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...