Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 156: 314-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24525216

ABSTRACT

A biosorptive activated sludge (BAS) was operated at lab-scale with diluted and concentrated municipal wastewater to study the efficiency of removal of organics (particulate and soluble COD) and recovery of nutrients (TKN, ammonia, phosphorus). The system performed significantly better with concentrated wastewater, where COD removal efficiency was 80% at organic loading rates between 10 and 20kg m(-3)d(-1). Supplementation of ferrous iron at 20mg L(-1), significantly improved both the removal of particulate, soluble COD and phosphorus. The effluent from the BAS was further treated using an ultrafiltration process with backwashing. The average permeate flux (at constant TMP=0.3bar) increased from 23 to 28 and 34L m(-2)h(-1) when raw sewage, BAS without iron, and iron respectively were tested. The proposed technology is compact, efficient and suitable for decentralized water reuse, while the capital and operational expenses were calculated as 0.64 and 0.43€ m(-3), respectively.


Subject(s)
Recycling , Sewage/chemistry , Ultrafiltration/methods , Wastewater/chemistry , Adsorption , Ammonia/analysis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Costs and Cost Analysis , Membranes, Artificial , Permeability , Phosphorus/analysis , Solubility , Ultrafiltration/economics , Waste Disposal, Fluid , Wastewater/economics
2.
Water Sci Technol ; 67(6): 1188-93, 2013.
Article in English | MEDLINE | ID: mdl-23508141

ABSTRACT

Pre-concentration of municipal wastewater by chemically enhanced primary treatment (CEPT) was studied under controlled laboratory conditions. Both iron and aluminium-based coagulants were examined at gradually increasing concentrations (0.23, 0.35, 0.70 and 1.05 mmol/L). The CEPT sludge generated from different coagulation experiments was digested in batch anaerobic reactors, while the supernatant was tested in a dead-end microfiltration setup. The results of the study show that biogas yield was dramatically decreased (from 0.40 to 0.10 m(3)/kg chemical oxygen demand of influent) with increasing coagulant dose. In contrast, supernatant filterability was improved. Based on the laboratory results, a conceptual design was produced for a community of 2000 inhabitant equivalents (IE), using CEPT technology (at low coagulant dose) with anaerobic digestion of the concentrates. According to this, the capital and operational costs were 0.11 and 0.09 €/m(3), respectively. The biogas generated is used for digester heating and the overall process is energy self-sufficient. At a small-scale and in private applications, CEPT technology is preferably operated at higher coagulant dose, followed by membrane filtration for water reuse. Accordingly, sewage purification and reuse is possible without implementing aerobic biological processes.


Subject(s)
Recycling , Sewage , Waste Management
SELECTION OF CITATIONS
SEARCH DETAIL
...