Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38610591

ABSTRACT

Large machine tools are critically affected by ambient temperature fluctuations, impacting their performance and the quality of machined products. Addressing the challenge of accurately measuring thermal effects on machine structures, this study introduces the Machine Tool Integrated Inverse Multilateration method. This method offers a precise approach for assessing geometric error parameters throughout a machine's working volume, featuring a low level of uncertainty and high speed suitable for effective temperature change monitoring. A significant innovation is found in the capability to automatically realise the volumetric error characterisation of medium- to large-sized machine tools at intervals of 40-60 min with a measurement uncertainty of 10 µm. This enables the detailed study of thermal errors which are generated due to variations in ambient temperature over extended periods. To validate the method, an extensive experimental campaign was conducted on a ZAYER Arion G™ large machine tool using a LEICA AT960™ laser tracker with four wide-angle retro-reflectors under natural workshop conditions. This research identified two key thermal scenarios, quasi-stationary and changing environments, providing valuable insights into how temperature variations influence machine behaviour. This novel method facilitates the optimization of machine tool operations and the improvement of product quality in industrial environments, marking a significant advancement in manufacturing metrology.

2.
Sensors (Basel) ; 18(9)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201886

ABSTRACT

An engineering validation of a large optical telescope consists of executing major performing tests at the subsystem level to verify the overall engineering performance of the observatory. Thus, the relative pointing error verification of the telescope mount assembly subsystem is of special interest to guarantee the absolute pointing performance of the large synoptic survey telescope. This paper presents a new verification method for the relative pointing error assessment of the telescope mount assembly, based on laser tracker technology and several fiducial points fixed to the floor. Monte-Carlo-based simulation results show that the presented methodology is fit for purpose, even if floor movement occurs due to temperature variation during the measurement acquisition process. A further research about laser tracker technology integration into the telescope structure may suggest that such laser tracker technology could be permanently installed in the telescope in order to provide an active alignment system that aims to detect and correct possible misalignment between mirrors or to provide the required mirror positioning verification accuracy after maintenance activities. The obtained results show that two on-board laser tracker systems combined with eight measurement targets could result in measurement uncertainties that are better than 1 arcsec, which would provide a reliable built-in metrology tool for large telescopes.

SELECTION OF CITATIONS
SEARCH DETAIL
...