Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; : 37028241257961, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853620

ABSTRACT

Raman spectroscopy allows for the unambiguous identification of materials through the inelastic scattering of light. This technique has a great many uses in various aspects of society from academic, scientific, and industry. This paper explores a specific type of Raman spectrometer called a spatial heterodyne Raman spectrometer (SHRSy), which is a variation of an interferometric spectrometer. It utilizes a Michelson interferometer and replaces the mirrors with gratings that transform it from a time-domain spectrometer to a spatial-domain spectrometer, allowing for the entirety of the spectrum to be captured at once. This study specifically tests a half-inch two-grating monolithic SHRS (½-in. 2g-mSHRS), which has a weight of <60 g and a size of 2.2 × 2.2 × 1.3 cm. To do this we excite a variety of organic liquids with a 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser, using an excitation energy of 6.5 mJ/pulse and distance of 3 m in conjunction with an intensified charge-coupled device camera. This is the first time that the SHRS has been used for investigating polarized Raman spectra of liquids. We discuss and contrast the instrumental properties such as resolution, spectral range, étendue, and field of view with previously tested mSHRS to give context to the instrument's performance.

2.
Appl Spectrosc ; 77(12): 1411-1423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801484

ABSTRACT

Spatial heterodyne Raman spectrometers (SHRSs) are modified forms of Michelson interferometers, except the mirrors in a Michelson interferometer are replaced with stationary diffraction gratings. This design removes the need for an entrance slit, as is the case in a dispersive spectrometer, and removes the need to scan the spectrum by using a moving mirror in a modern Michelson interferometer. In previous studies, various SHRS variants, such as free-standing two-grating SHRS, single-grating SHRS (1g-SHRS), monolithic SHRS (mSHRS), and single-grating mSHRS (1g-mSHRS), have been evaluated. However, the present study exclusively focuses on the 1g-mSHRS configuration. The 1g-mSHRS and 1g-SHRS increase the spectral range at fixed grating line density while trading off spectral resolution and resolving power. The mSHRS benefits from increased rigidity, lack of moving parts, and reduced footprint. In this study, we investigate how the choice of detector impacts the performance of the 1g-mSHRS system, with a specific focus on evaluating the performance of three types of cameras: charged-coupled device (CCD), intensified CCD (ICCD), and complementary metal-oxide-semiconductor (CMOS) cameras. These systems were evaluated using geological, organic, and inorganic samples using a 532 nm continuous wave laser for the CMOS and CCD cameras, and a 532 nm neodymium-doped yttrium aluminum garnet pulsed laser for the ICCD camera. The footprint of the 1g-mSHRS was 3.5 × 3.5 × 2.5 cm3 with a mass of 272 g or 80 g, depending on whether the monolith housing is included or not. We found that increasing the number of pixels utilized along the x-axis of the camera increases fringe visibility (FV) and optimizes the resolution (by capturing the entirety of the grating and magnifying the fringes). The number of pixels utilized in the y-axis, chip size, and dimensions, affect the signal-to-noise ratio of the systems. Additionally, we discuss the effect of pixel pitch on the recovery of Fizeau fringes, including the relationship between the Nyquist frequency, aliasing, and FV.

3.
Appl Spectrosc ; 77(5): 534-549, 2023 May.
Article in English | MEDLINE | ID: mdl-36223496

ABSTRACT

Advances in Raman instrumentation have led to the implementation of a remote dispersive Raman spectrometer on the Perseverance rover on Mars, which is used for remote sensing. For remote applications, dispersive spectrometers suffer from a few setbacks such as relatively larger sizes, low light throughput, limited spectral ranges, relatively low resolutions for small devices, and high sensitivity to misalignment. A spatial heterodyne Raman spectrometer (SHRS), which is a fixed grating interferometer, helps overcome some of these problems. Most SHRS devices that have been described use two fixed diffraction gratings, but a variance of the SHRS called the one-grating SHRS (1g-SHRS) replaces one of the gratings with a mirror, which makes it more compact. In a recent paper we described monolithic two-gratings SHRS, and in this paper, we investigate a single-grating monolithic SHRS (1g-mSHRS), which combines the 1g-SHRS with a monolithic setup previously tested at the University of South Carolina. This setup integrates the beamsplitter, grating, and mirror into a single monolithic device. This reduces the number of adjustable components, allows for easier alignment, and reduces the footprint of the device (35 × 35 × 25 mm with a weight of 80 g). This instrument provides a high spectral resolution (∼9 cm-1) and large spectral range (7327 cm-1) while decreasing the sensitivity to alignment with a field of view of 5.61 mm at 3m. We discuss the characteristics of the 1g-mSHRS by measuring the time-resolved remote Raman spectra of a few inorganic salts, organics, and minerals at 3 m. The 1g-mSHRS makes a good candidate for planetary exploration because of its large spectral range, greater sensitivity, competitively higher spectral resolution, low alignment sensitivity, and high light throughput in a compact easily aligned system with no moving parts.

4.
Appl Spectrosc ; 75(11): 1427-1436, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34309445

ABSTRACT

We have developed a compact instrument called the "COmpact COlor BIofinder", or CoCoBi, for the standoff detection of biological materials and organics with polyaromatic hydrocarbons (PAHs) using a nondestructive approach in a wide area. The CoCoBi system uses a compact solid state, conductively cooled neodymium-doped yttrium aluminum garnet (Nd:YAG) nanosecond pulsed laser capable of simultaneously providing two excitation wavelengths, 355 and 532 nm, and a compact, sensitive-gated color complementary metal-oxide-semiconductor camera detector. The system is compact, portable, and determines the location of biological materials and organics with PAHs in an area 1590 cm2 wide, from a target distance of 3 m through live video using fast fluorescence signals. The CoCoBi system is highly sensitive and capable of detecting a PAH concentration below 1 part per billion from a distance of 1 m. The color images provide the simultaneous detection of various objects in the target area using shades of color and morphological features. We demonstrate that this unique feature successfully detected the biological remains present in a 150-million-year-old fossil buried in a fluorescent clay matrix. The CoCoBi was also successfully field-tested in Hawaiian ocean water during daylight hours for the detection of natural biological materials present in the ocean. The wide-area and video-speed imaging capabilities of CoCoBi for biodetection may be highly useful in future NASA rover-lander life detection missions.


Subject(s)
Lasers, Solid-State , Fluorescence , Fossils , Hydrocarbons
5.
Appl Spectrosc ; 75(6): 739-746, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33635100

ABSTRACT

We describe the fabrication of an underwater time-gated standoff Raman sensor, consisting of a custom Raman spectrometer, custom scanner, and commercial diode-pumped pulsed 532 nm laser all located inside a pressure housing. The Raman sensor was tested in the laboratory with samples in air, a tank containing tap water and seawater, and in the coastal Hawaiian harbor. We demonstrate our new system by presenting standoff Raman spectra of some of the chemicals used in homemade explosive devices and improvised explosive devices, including sulfur, nitrates, chlorates, and perchlorates up to a distance of ∼6 m in seawater and tap water. Finally, the Raman spectra of these hazardous chemicals sealed inside plastic containers submersed in the Hawaiian Harbor water are also presented.

6.
Appl Spectrosc ; 75(3): 299-306, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32613858

ABSTRACT

Raman spectroscopy is a technique that can detect and characterize a range of molecular compounds such as water, water ice, water-bearing minerals, and organics of particular interest to planetary science. The detection and characterization of these molecular compounds, which are indications of habitability on planetary bodies, have become an important goal for planetary exploration missions spanning the solar system. Using a compact portable remote Raman system consisting of a 532 nm neodymium-doped yttrium aluminum garnet- (Nd:YAG-) pulsed laser, a 3-in. (7.62 cm) diameter mirror lens and a compact spectrograph with a miniature intensified charge coupled device (mini-ICCD), we were able to detect water (H2O), water ice (H2O-ice), CO2-ice, hydrous minerals, organics, nitrates, and an amino acid from a remote distance of 122 m in natural lighting conditions. To the best of our knowledge, this is the longest remote Raman detection using a compact system. The development of this uniquely compact portable remote Raman system is applicable to a range of solar system exploration missions including stationary landers for ocean worlds and lunar exploration, as they provide unambiguous detection of compounds indicative of life as well as resources necessary for further human exploration.

7.
Appl Spectrosc ; 75(2): 208-215, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32662290

ABSTRACT

Spatial heterodyne spectrometers are members of the static Fourier transform class of spectrometers, well-regarded for their ability to acquire high-resolution, high wavelength precision emission spectra in compact, light footprint packages. In a spatial heterodyne spectrometer experiment, a Fizeau fringe is generated for every spectral feature in a given spectrum, and spatial heterodyne spectrometer records the superposition of all Fizeau fringes in the spectrum on a detector. Hence, the sensitivity of spatial heterodyne spectrometers is constrained by uncorrelated, multiplicative photon noise that limits the detection of spectral features to those that are more luminous than the square root of the total incident flux onto the detector. In essence, powerful spectral features create a rising floor of noise that wash out less luminous features. In the present work, we introduce a novel spectrometer coupling, that being an Amici prism spectrometer in series with spatial heterodyne spectrometer, that correlates photon shot noise along one axis of a detector that in turn suppresses multiplicative photon noise within each row of the interferogram image. We demonstrate that this spectrometer pairing facilitates the measurement of weak Raman spectral features that, in a traditional spatial heterodyne spectrometer measurement, would be washed out by multiplicative photon noise.

8.
Appl Spectrosc ; 74(2): 233-240, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31517522

ABSTRACT

The detection and identification of materials from a distance is highly desirable for applications where accessibility is limited or there are safety concerns. Raman spectroscopy can be performed remotely and provides a very high level of confidence in detection of chemicals through vibrational modes. However, the remote Raman detection of chemicals is challenging because of the very weak nature of Raman signals. Using a remote Raman system, we performed fast remote detection of various solid and liquid chemicals from 1752 m during afternoon hours on a sunny day in Hawaii. Remote Raman systems with kilometer target range could be useful for chemical detection of volcanic gases, methane clathrate icebergs or fire ice, toxic gas clouds and toxic waste, explosives, and hazardous chemicals. With this successful test, we demonstrate the feasibility of developing future mid-size remote Raman systems suitable for long range chemical detection using helicopters and light airplanes.

SELECTION OF CITATIONS
SEARCH DETAIL
...