Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831016

ABSTRACT

Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.

2.
Ecol Evol ; 13(8): e10441, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37621317

ABSTRACT

The invasion of alien plants has been rapidly proceeding worldwide due to urbanisation. This might be beneficial to wild pollinating insects, since some alien plant species have large flowers and/or long flowering periods, which can increase nectar sugar and pollen availability. To determine the relative contribution of alien plants to floral resource supply and whether resource-rich alien plants, if any, serve as an important food source of pollinating insects, we performed year-round field observations in suburban riverbanks. We quantified the per-unit-area availability of nectar sugar and pollen delivered by alien and native flowering species and counted wild flower visitors (bees and wasps, hoverflies and butterflies) per plant species. The available nectar sugar and pollen per area were predominantly delivered by a few specific alien species, and the relative contribution of other species to floral resource provision was low throughout the period that wild flower visitors were observed. Nonetheless, the resource-rich alien plants were not visited by as many insects as expected based on their contribution to resource provision. Rather, on a yearly basis, these plants received equal or even fewer visits than other flowering species, including resource-poor natives. We show that despite their great contribution to the gross floral resource supply, resource-rich alien plants do not serve as a principal food source for wild pollinating insects, and other plants, especially natives, are still needed to satisfy insect demand. For the conservation of pollinating insects in suburban ecosystems, maintaining floral resource diversity would be more beneficial than having an increase in gross floral resources by allowing the dominance of specific alien plants.

3.
Sci Rep ; 8(1): 12320, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120350

ABSTRACT

Abscisic acid (ABA) is a phytohormone that is necessary for stress adaptation. Recent studies have reported that attenuated levels of ABA improved grain yield and seedling growth under low temperature in cereals. To improve plant growth under low temperature, we attempted to generate ABA-insensitive transgenic rice by expressing a clade A type 2C protein phosphatase (OsPP2C), OsABIL2, with or without the mutation equivalent to the Arabidopsis abi1-1 mutation. A yeast two-hybrid assay revealed that the interaction between OsABIL2 and a putative rice ABA receptor, OsPYL1, was ABA-dependent, and the interaction was lost with amino acid substitution from glycine to aspartic acid at the 183rd amino acid of the OsABIL2 protein, corresponding to abi1-1 mutation. The constitutive expression of OsABIL2 or OsABIL2G183D in Arabidopsis or rice decreased ABA sensitivity to differing degrees. Moreover, the transgenic rice expressing OsABIL2G183D exhibited improved seedling growth under low temperature, although the transgenic lines showed unfavorable traits, such as viviparous germination and elongated internodes. These results indicated that the introduction of abi1-1 type dominant mutation was also effective in OsABIL2 at decreasing ABA sensitivity in plants, and the attenuation of ABA sensitivity could be an alternative parameter to improve rice performance under low temperatures.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/metabolism , Oryza/drug effects , Oryza/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Mutation , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...