Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 66(4): 375-381, 2018.
Article in English | MEDLINE | ID: mdl-29607903

ABSTRACT

We have been investigating the potential of oligoarginine-linked polymers as an adjuvant for mucosal vaccination that induces immunoglobulin G (IgG) in systemic circulation and immunoglobulin A (IgA) secreted on the mucosa. Our latest infection experiments demonstrated that mice immunized nasally with a mixture of inactivated influenza viruses and poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) modified with D-octaarginine were perfectly protected from homologous virus infection. On the contrary, virus infection was observed in mice immunized with the antigen alone. This difference was presumably due to insignificant induction of secreted IgA on the nasal mucosa in the latter mice. Since it was unclear whether the current induction level was sufficient for heterologous virus infection, we evaluated the effects of the chemical structures of oligoarginines conjugated to PNVA-co-AA on induction of intranasal IgA. The number and optical activity of the arginine residues and the degree of modification with oligoarginines in the polymer backbone were listed as a factor that would influence IgA induction. Mouse experiments revealed that maximization of the modification resulted in an increase in adjuvant activities of oligoarginine-linked polymers most effectively. Glycine segments inserted between oligoarginines and the polymer backbone were a prerequisite for the maximization. The highest IgA level was observed when antigens were coadministered with diglycine-D-octaarginine-linked PNVA-co-AA.


Subject(s)
Adjuvants, Immunologic/chemistry , Antibodies/immunology , Arginine/chemistry , Biocompatible Materials/chemistry , Mucous Membrane/immunology , Nasal Cavity/immunology , Polymers/chemistry , Animals , Antibodies/chemistry , Arginine/analogs & derivatives , Female , Mice , Mice, Inbred BALB C , Molecular Structure , Mucous Membrane/chemistry
2.
Bioconjug Chem ; 27(8): 1865-71, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27463562

ABSTRACT

Mucosal vaccination is one of the most effective ways to reduce the risk of pandemics as a result of incorrect prediction of epidemic strains of influenza viruses or virus mutation. However, adjuvants and antigen carriers with potent immunostimulatory activities are a prerequisite for significant induction of mucosal immunity because most antigens are poorly immunogenic when solely applied to the mucosa. Our previous studies demonstrated that poly(N-vinylacetamide-co-acrylic acid) bearing d-octaarginine induced the secretion of antigen-specific immunoglobulin A (IgA) on the mucosa when nasally administered with virus antigens and that intranasal IgA reacts to viral strains other than the one used for immunization. Therefore, the present study evaluated capabilities of secreted IgA for protection against virus infection. When mice were inoculated with a mixture of inactivated H1N1 A/Puerto Rico/8/34 influenza viruses and d-octaarginine-linked polymers, antigen-specific secreted IgA was induced on the nasal mucosa. Immunized mice were completely protected from virus infection of the inoculated strain. To the contrary, mice nasally inoculated with inactivated viruses alone were infected with the homologous viruses presumably because of insignificant induction of secreted IgA. Results demonstrated that our polymer would be a promising adjuvant for mucosal vaccination.


Subject(s)
Acrylic Resins/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Mucous Membrane/immunology , Oligopeptides/chemistry , Polymers/chemistry , Vaccination , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Oligopeptides/immunology
3.
Eur J Pharm Biopharm ; 92: 56-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25720816

ABSTRACT

We evaluated cross-reactivity of immunoglobulin A (IgA) secreted on the nasal mucosa in mice that were nasally inoculated 4 times with a mixture of inactivated H1N1 influenza A viruses and poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing d-octaarginine at 7-day intervals. Three viral strains (A/Puerto Rico/8/34, A/New Caledonia/20/99 IVR116, and A/Solomon Islands/03/2006) and D-octaarginine-linked polymers with different molecular weights were used as antigens and their carriers, respectively. Secretion of intranasal IgA was barely observed when the inactivated virus alone was administered. The polymer induced the production of intranasal IgA specific to the inoculated viruses, irrespective of the viral strain and molecular weight of the polymer. The respective antibodies cross-reacted to recombinant hemagglutinin proteins of not only the viral strain used for immunization but also other H1N1 strains, including A/Puerto Rico/8/34 strain whose hemagglutinin proteins are diverse from those of other strains. Mice with high reactivity of IgA to the inoculated viruses tended to acquire clear cross-reactivity to other viral strains. Notably, IgA induced by inactivated H1N1 A/New Caledonia/20/99 IVR116 strain with the strongest immunogenicity between 3 antigens in the presence of the polymer cross-reacted to recombinant hemagglutinin proteins of the A/Brisbane/10/2007 and A/Viet Nam/1194/2004 strains, which are categorized into H3N2 and H5N1, respectively. Our polymer is a potential candidate for an efficient antigen carrier that induces mucosal IgA having cross-reactivity to antigenically drifted variants, irrespective of the subtype of viral strains.


Subject(s)
Immunoglobulin A/immunology , Influenza A Virus, H1N1 Subtype/immunology , Nasal Mucosa/immunology , Oligopeptides/chemistry , Acetamides/chemistry , Acrylates/chemistry , Animals , Antigens/immunology , Cross Reactions , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Mice , Mice, Inbred BALB C , Molecular Weight , Nasal Mucosa/virology , Polymers/chemistry , Polyvinyls/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...