Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0297744, 2024.
Article in English | MEDLINE | ID: mdl-38625879

ABSTRACT

Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature. Whilst different malaria modelling techniques and climate simulations have been used to predict malaria transmission risk, most of these studies use coarse-resolution climate models. In these models convection, atmospheric vertical motion driven by instability gradients and responsible for heavy rainfall, is parameterised. Over the past decade enhanced computational capabilities have enabled the simulation of high-resolution continental-scale climates with an explicit representation of convection. In this study we use two malaria models, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing convection on simulated malaria transmission. The concluded impact of explicitly representing convection on simulated malaria transmission depends on the chosen malaria model and local climatic conditions. For instance, in the East African highlands, cooler temperatures when explicitly representing convection decreases LMM-predicted malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simulations. Even though explicitly representing convection improves rainfall characteristics, concluding that explicit convection improves simulated malaria transmission depends on the chosen metric and malaria model. For example, whilst we conclude improvements of 45% and 23% in root mean squared differences of the annual-mean reproduction number and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting mean climate conditions minimises these improvements. The projected impact of anthropogenic climate change on malaria incidence is also sensitive to the chosen malaria model and representation of convection. The LMM is relatively insensitive to future changes in precipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced rainfall. We postulate that VECTRI's enhanced sensitivity to precipitation changes compared to the LMM is due to the inclusion of surface hydrology. Future research should continue assessing the effect of high-resolution climate modelling in impact-based forecasting.


Subject(s)
Convection , Malaria , Humans , Africa/epidemiology , Computer Simulation , Hydrology/methods , Malaria/epidemiology
2.
Sci Total Environ ; 792: 148282, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34146810

ABSTRACT

Drought remains one of the world's most devastating phenomena, exhibiting impacts in both magnitude and frequency. African vegetation remains highly vulnerable to drought impacts and this is heightened by a changing climate. In this study, we evaluated the suitability of vegetation indices to monitor the response of Africa's terrestrial ecoregions to drought. Here, we used the SPEI, a global drought index to investigate the spatiotemporal characteristics of drought on vegetation. In addition, TVDI, TCI, VCI, NVSWI, VSWI and DSI, which are remotely sensed derived drought indices were also used to characterize drought. For the vegetation indices, we used the optical satellite calculated NDVI; VOD, a passive microwave remote sensing product; and derived Nvod as proxies for vegetation. The climatology of climate and vegetation data was calculated, and the trend of the variables was examined. Additionally, comparisons were performed between the SPEI and the other drought indices. Subsequently, we computed the correlations between the SPEI and vegetation indices spatially, temporally and seasonally. Our results show that VOD and the NDVI have similar spatial distribution, with higher values of the indices recorded over the Democratic Republic of Congo (DRC) and Central African Republic (C.A.R) compared to the rest of the region. Furthermore, we also found that the indices have similar seasonal patterns as precipitation and an inverse relationship with temperature. The study also reveals that there is a declining long-term trend of precipitation over evergreen needleleaf forest, evergreen broadleaf forest, and woody savanna; and an increasing trend of VOD and NDVI over Africa's ecoregions. Furthermore, the results show a high SPEI - VOD correlations (r2 = 0.8) in southern Africa and the Horn of Africa, and a weak response in the Sahelian region. While the response of NDVI is similar to a spatial distribution as VOD, the magnitudes of response are generally weaker in the NDVI, and the magnitudes and distribution of response by Nvod are similar to VOD. Also, the response of Nvod is the weakest across all the timescales although its magnitudes vary significantly from year - year, with the timescale of occurrence mostly shorter for JJA but largely longer for MAM. However, the magnitudes of the response of vegetation indices are different for remotely sensed derived drought indices. In addition, the mean and trend of the response of VOD are consistently stronger in evergreen needleleaf forest and open shrublands but weaker over the evergreen broadleaf forest. Our study has presented insights on methods by which the impacts of droughts on plant activities and functions may be monitored.


Subject(s)
Droughts , Forests , Africa, Southern , Climate Change , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...