Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 20(6): 10570-10589, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37322949

ABSTRACT

In systems biology, the analysis of complex nonlinear systems faces many methodological challenges. For the evaluation and comparison of the performances of novel and competing computational methods, one major bottleneck is the availability of realistic test problems. We present an approach for performing realistic simulation studies for analyses of time course data as they are typically measured in systems biology. Since the design of experiments in practice depends on the process of interest, our approach considers the size and the dynamics of the mathematical model which is intended to be used for the simulation study. To this end, we used 19 published systems biology models with experimental data and evaluated the relationship between model features (e.g., the size and the dynamics) and features of the measurements such as the number and type of observed quantities, the number and the selection of measurement times, and the magnitude of measurement errors. Based on these typical relationships, our novel approach enables suggestions of realistic simulation study designs in the systems biology context and the realistic generation of simulated data for any dynamic model. The approach is demonstrated on three models in detail and its performance is validated on nine models by comparing ODE integration, parameter optimization, and parameter identifiability. The presented approach enables more realistic and less biased benchmark studies and thereby constitutes an important tool for the development of novel methods for dynamic modeling.


Subject(s)
Algorithms , Systems Biology , Systems Biology/methods , Models, Biological , Computer Simulation , Models, Theoretical
2.
PLoS Biol ; 21(5): e3001665, 2023 05.
Article in English | MEDLINE | ID: mdl-37252939

ABSTRACT

Epithelial repair relies on the activation of stress signaling pathways to coordinate tissue repair. Their deregulation is implicated in chronic wound and cancer pathologies. Using TNF-α/Eiger-mediated inflammatory damage to Drosophila imaginal discs, we investigate how spatial patterns of signaling pathways and repair behaviors arise. We find that Eiger expression, which drives JNK/AP-1 signaling, transiently arrests proliferation of cells in the wound center and is associated with activation of a senescence program. This includes production of the mitogenic ligands of the Upd family, which allows JNK/AP-1-signaling cells to act as paracrine organizers of regeneration. Surprisingly, JNK/AP-1 cell-autonomously suppress activation of Upd signaling via Ptp61F and Socs36E, both negative regulators of JAK/STAT signaling. As mitogenic JAK/STAT signaling is suppressed in JNK/AP-1-signaling cells at the center of tissue damage, compensatory proliferation occurs by paracrine activation of JAK/STAT in the wound periphery. Mathematical modelling suggests that cell-autonomous mutual repression between JNK/AP-1 and JAK/STAT is at the core of a regulatory network essential to spatially separate JNK/AP-1 and JAK/STAT signaling into bistable spatial domains associated with distinct cellular tasks. Such spatial stratification is essential for proper tissue repair, as coactivation of JNK/AP-1 and JAK/STAT in the same cells creates conflicting signals for cell cycle progression, leading to excess apoptosis of senescently stalled JNK/AP-1-signaling cells that organize the spatial field. Finally, we demonstrate that bistable separation of JNK/AP-1 and JAK/STAT drives bistable separation of senescent signaling and proliferative behaviors not only upon tissue damage, but also in RasV12, scrib tumors. Revealing this previously uncharacterized regulatory network between JNK/AP-1, JAK/STAT, and associated cell behaviors has important implications for our conceptual understanding of tissue repair, chronic wound pathologies, and tumor microenvironments.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factor AP-1/metabolism , STAT Transcription Factors/metabolism , Drosophila/metabolism , Cell Proliferation , Janus Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
3.
J Proteome Res ; 20(7): 3489-3496, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34062065

ABSTRACT

Imputation is a prominent strategy when dealing with missing values (MVs) in proteomics data analysis pipelines. However, it is difficult to assess the performance of different imputation methods and varies strongly depending on data characteristics. To overcome this issue, we present the concept of a data-driven selection of an imputation algorithm (DIMA). The performance and broad applicability of DIMA are demonstrated on 142 quantitative proteomics data sets from the PRoteomics IDEntifications (PRIDE) database and on simulated data consisting of 5-50% MVs with different proportions of missing not at random and missing completely at random values. DIMA reliably suggests a high-performing imputation algorithm, which is always among the three best algorithms and results in a root mean square error difference (ΔRMSE) ≤ 10% in 80% of the cases. DIMA implementation is available in MATLAB at github.com/kreutz-lab/OmicsData and in R at github.com/kreutz-lab/DIMAR.


Subject(s)
Algorithms , Proteomics , Databases, Factual , Humans
4.
PLoS Comput Biol ; 17(1): e1008646, 2021 01.
Article in English | MEDLINE | ID: mdl-33497393

ABSTRACT

Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been-so far-no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.


Subject(s)
Programming Languages , Systems Biology/methods , Algorithms , Databases, Factual , Models, Biological , Models, Statistical , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...