Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 29(4): 646-653, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30626557

ABSTRACT

In oncology, the "Warburg effect" describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia-induced 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) plays a noteworthy role in the regulation of glycolysis by producing fructose-2,6-biphosphate (F-2,6-BP), a potent activator of the glycolysis rate-limiting phosphofructokinase PFK-1. Series of amides and sulfonamides derivatives based on a N-aryl 6-aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluation.


Subject(s)
Amides/chemistry , Phosphofructokinase-2/antagonists & inhibitors , Quinoxalines/chemistry , Quinoxalines/pharmacology , Sulfonamides/chemistry , HCT116 Cells , Humans , Kinetics , Solubility
2.
J Chem Inf Model ; 59(1): 535-549, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30500211

ABSTRACT

Computational approaches currently assist medicinal chemistry through the entire drug discovery pipeline. However, while several computational tools and strategies are available to predict binding affinity, predicting the drug-target binding kinetics is still a matter of ongoing research. Here, we challenge scaled molecular dynamics simulations to assess the off-rates for a series of structurally diverse inhibitors of the heat shock protein 90 (Hsp90) covering 3 orders of magnitude in their experimental residence times. The derived computational predictions are in overall good agreement with experimental data. Aside from the estimation of exit times, unbinding pathways were assessed through dimensionality reduction techniques. The data analysis framework proposed in this work could lead to better understanding of the mechanistic aspects related to the observed kinetic behavior.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Molecular Dynamics Simulation , Pharmaceutical Preparations/metabolism , HSP90 Heat-Shock Proteins/chemistry , Humans , Kinetics , Ligands , Protein Binding , Protein Conformation
3.
ChemMedChem ; 14(1): 169-181, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30378281

ABSTRACT

Energy and biomass production in cancer cells are largely supported by aerobic glycolysis in what is called the Warburg effect. The process is regulated by key enzymes, among which phosphofructokinase PFK-2 plays a significant role by producing fructose-2,6-biphosphate; the most potent activator of the glycolysis rate-limiting step performed by phosphofructokinase PFK-1. Herein, the synthesis, biological evaluation and structure-activity relationship of novel inhibitors of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which is the ubiquitous and hypoxia-induced isoform of PFK-2, are reported. X-ray crystallography and docking were instrumental in the design and optimisation of a series of N-aryl 6-aminoquinoxalines. The most potent representative, N-(4-methanesulfonylpyridin-3-yl)-8-(3-methyl-1-benzothiophen-5-yl)quinoxalin-6-amine, displayed an IC50 of 14 nm for the target and an IC50 of 0.49 µm for fructose-2,6-biphosphate production in human colon carcinoma HCT116 cells. This work provides a new entry in the field of PFKFB3 inhibitors with potential for development in oncology.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphofructokinase-2/antagonists & inhibitors , Quinoxalines/chemistry , Quinoxalines/pharmacology , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , HCT116 Cells , Humans , Lactic Acid/antagonists & inhibitors , Lactic Acid/biosynthesis , Models, Molecular , Molecular Structure , Phosphofructokinase-2/metabolism , Quinoxalines/chemical synthesis , Structure-Activity Relationship
4.
J Med Chem ; 61(10): 4397-4411, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29701469

ABSTRACT

Residence time and more recently the association rate constant kon are increasingly acknowledged as important parameters for in vivo efficacy and safety of drugs. However, their broader consideration in drug development is limited by a lack of knowledge of how to optimize these parameters. In this study on a set of 176 heat shock protein 90 inhibitors, structure-kinetic relationships, X-ray crystallography, and molecular dynamics simulations were combined to retrieve a concrete scheme of how to rationally slow down on-rates. We discovered that an increased ligand desolvation barrier by introducing polar substituents resulted in a significant kon decrease. The slowdown was accomplished by introducing polar moieties to those parts of the ligand that point toward a hydrophobic cavity. We validated this scheme by increasing polarity of three Hsp90 inhibitors and observed a 9-, 13-, and 45-fold slowdown of on-rates and a 9-fold prolongation in residence time. This prolongation was driven by transition state destabilization rather than ground state stabilization.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Molecular Dynamics Simulation , Binding Sites , Crystallography, X-Ray , HSP90 Heat-Shock Proteins/metabolism , Humans , Ligands , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation
5.
Angew Chem Int Ed Engl ; 57(6): 1576-1580, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29271116

ABSTRACT

AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B. Subsequent proteomic, genetic and biochemical studies indicate that MSC1094308 binds to a previously characterized drugable hotspot of p97, thereby inhibiting the D2 ATPase activity. Our results furthermore indicate that a similar allosteric site exists in VPS4B, suggesting conserved allosteric circuits and drugable sites in both type I and II AAA ATPases. Our results may thus guide future chemical tool and drug discovery efforts for the biomedically relevant AAA ATPases.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Enzyme Inhibitors/metabolism , Valosin Containing Protein/metabolism , ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/genetics , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Allosteric Site , Binding Sites , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/genetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Mutagenesis, Site-Directed , Protein Binding , Structure-Activity Relationship , Valosin Containing Protein/antagonists & inhibitors
6.
Traffic ; 18(8): 530-544, 2017 08.
Article in English | MEDLINE | ID: mdl-28485883

ABSTRACT

The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP-ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF-26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF-26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF-26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP-ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.


Subject(s)
Cell Survival , Golgi Apparatus/metabolism , Stress, Physiological , ADP-Ribosylation Factors/drug effects , ADP-Ribosylation Factors/metabolism , Brefeldin A/pharmacology , Cell Line, Tumor , HEK293 Cells , Humans , Naphthols/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology
7.
J Pharm Sci ; 103(5): 1504-14, 2014 May.
Article in English | MEDLINE | ID: mdl-24648352

ABSTRACT

Common strategies to optimize prodrugs use either in vitro or rodent in vivo approaches, which do not consider elimination pathways that do not result in the generation of the desired product or might be misleading because of species differences, respectively. As a step forward, we have incorporated a novel application of hepatocytes into our prodrug optimization strategy to increase the bioavailability of a poorly soluble drug candidate by attaching a charged ester linker. The model involves the incubation of hepatocytes from multiple species in serum-containing medium to mimic formation as well as simultaneous metabolism of both prodrug and active drug. Using this strategy, a correlation between the in vitro AUC and the AUC after intravenous administration was obtained for active drug formation in several species. Moreover, hepatocytes correctly predicted the likelihood of undesired exposure with nonhydrolyzed prodrug. This novel approach enabled us to identify several prodrugs, which showed improved exposure over a wide dose range. Furthermore, a strategy was developed resulting in a decision tree that can be used to determine the applicability of the hepatocyte model in the screening process.


Subject(s)
Hepatocytes/metabolism , Prodrugs/administration & dosage , Prodrugs/metabolism , Serum/metabolism , Animals , Area Under Curve , Biological Availability , Dogs , Esters/chemistry , Female , Humans , Kinetics , Macaca fascicularis , Male , Mice , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Prodrugs/chemistry , Rats , Rats, Wistar , Solubility
8.
PLoS One ; 8(11): e78443, 2013.
Article in English | MEDLINE | ID: mdl-24265689

ABSTRACT

The molecular chaperones of the Hsp70 family have been recognized as targets for anti-cancer therapy. Since several paralogs of Hsp70 proteins exist in cytosol, endoplasmic reticulum and mitochondria, we investigated which isoform needs to be down-regulated for reducing viability of cancer cells. For two recently identified small molecule inhibitors, VER-155008 and 2-phenylethynesulfonamide (PES), which are proposed to target different sites in Hsp70s, we analyzed the molecular mode of action in vitro. We found that for significant reduction of viability of cancer cells simultaneous knockdown of heat-inducible Hsp70 (HSPA1) and constitutive Hsc70 (HSPA8) is necessary. The compound VER-155008, which binds to the nucleotide binding site of Hsp70, arrests the nucleotide binding domain (NBD) in a half-open conformation and thereby acts as ATP-competitive inhibitor that prevents allosteric control between NBD and substrate binding domain (SBD). Compound PES interacts with the SBD of Hsp70 in an unspecific, detergent-like fashion, under the conditions tested. None of the two inhibitors investigated was isoform-specific.


Subject(s)
HSC70 Heat-Shock Proteins/antagonists & inhibitors , Purine Nucleosides/pharmacology , Sulfonamides/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , HSC70 Heat-Shock Proteins/chemistry , HSC70 Heat-Shock Proteins/metabolism , Humans , Hydrolysis/drug effects , Luciferases/chemistry , Molecular Conformation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Refolding/drug effects , Protein Structure, Tertiary
9.
Bioorg Med Chem Lett ; 22(13): 4396-403, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22632933

ABSTRACT

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high µM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.


Subject(s)
Amides/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Indazoles/chemistry , Small Molecule Libraries/chemistry , Amides/toxicity , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Crystallography, X-Ray , Drug Evaluation, Preclinical , HSP90 Heat-Shock Proteins/metabolism , Humans , Protein Structure, Tertiary , Small Molecule Libraries/toxicity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...