Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(10): 106001, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962051

ABSTRACT

Tunnel spectroscopy data for the detection of Majorana bound states (MBS) is often criticized for its proneness to misinterpretation of genuine MBS with low-lying Andreev bound states. Here, we suggest a protocol removing this ambiguity by extending single shot measurements to sequences performed at varying system parameters. We demonstrate how such sampling, which we argue requires only moderate effort for current experimental platforms, resolves the statistics of Andreev side lobes, thus providing compelling evidence for the presence or absence of a Majorana center peak.

2.
Phys Rev Lett ; 129(3): 037703, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905364

ABSTRACT

Recent experiments have demonstrated the possibility of inducing superconducting pairing into counterpropagating fractional quantum Hall edge modes. This paves the way for the realization of localized parafermionic modes, non-Abelian anyons that share fractional charges in a nonlocal way. We show that, for a pair of isolated parafermions, this joint degree of freedom can be read by conductance measurements across standard metallic electrodes. We propose two complementary setups. We investigate first the transport through a grounded superconductor hosting two interacting parafermions. In the low-energy limit, its conductance peaks reveal their shared fractional charge yielding a three-state telegraph noise for weak quasiparticle poisoning. We then examine the two-terminal electron conductance of a blockaded fractional topological superconductor, which displays a characteristic e/3 periodicity of its zero-bias peaks in the deep topological regime, thus signaling the presence of parafermionic modes.

3.
Phys Rev Lett ; 125(22): 227202, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315455

ABSTRACT

We show that spin-spin correlations in a non-Abelian Kitaev spin liquid are associated with a characteristic inhomogeneous charge density distribution in the vicinity of Z_{2} vortices. This density profile and the corresponding local electric fields are observable, e.g., by means of surface probe techniques. Conversely, by applying bias voltages to several probe tips, one can stabilize Ising anyons (Z_{2} vortices harboring a Majorana zero mode) at designated positions, where we predict a clear Majorana signature in energy absorption spectroscopy.

4.
Phys Rev Lett ; 125(14): 147701, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064546

ABSTRACT

Pure quantum states can be stabilized in open quantum systems subject to external driving forces and dissipation by environmental modes. We show that driven dissipative (DD) Majorana devices offer key advantages for stabilizing degenerate state manifolds ("dark spaces") and for manipulating states in dark spaces, both with respect to native (non-DD) Majorana devices and to DD platforms with topologically trivial building blocks. For two tunnel-coupled Majorana boxes, using otherwise only standard hardware elements (e.g., a noisy electromagnetic environment and quantum dots with driven tunnel links), we propose a dark qubit encoding. We anticipate exceptionally high fault tolerance levels due to a conspiracy of DD-based autonomous error correction and topology.

5.
Phys Rev Lett ; 123(13): 137202, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697534

ABSTRACT

We show that a honeycomb lattice of Heisenberg spin-1/2 chains with three-spin junction interactions allows for controlled analytical studies of chiral spin liquids (CSLs). Tuning these interactions to a chiral fixed point, we find a Kalmeyer-Laughlin CSL phase which here is connected to the critical point of a boundary conformal field theory. Our construction directly yields a quantized spin Hall conductance and localized spinons with semionic statistics as elementary excitations. We also outline the phase diagram away from the chiral point where spinons may condense. Generalizations of our approach can provide microscopic realizations for many other CSLs.

6.
Phys Rev Lett ; 123(6): 060405, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31491147

ABSTRACT

We study the adiabatic dynamics of degenerate quantum states induced by loop paths in a control parameter space. The latter correspond to noisy trajectories if the system is weakly coupled to environmental modes. On top of conventional dynamic dephasing, we find a universal non-Abelian geometric dephasing (NAGD) contribution and express it in terms of the non-Abelian Berry connection and curvature. We show that NAGD implies either decay or amplification of coherences as compared to the coherences when only dynamic dephasing is present. The full NAGD matrix structure can be probed through interference experiments. We outline such a detection scheme for modified Majorana braiding setups.

7.
Phys Rev Lett ; 122(2): 027201, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30720312

ABSTRACT

We show that the coupling of homogeneous Heisenberg spin-1/2 ladders in different phases leads to the formation of interfacial zero energy Majorana bound states. Unlike Majorana bound states at the interfaces of topological quantum wires, these states are void of topological protection and generally susceptible to local perturbations of the host spin system. However, a key message of our Letter is that, in practice, they show a high degree of resilience over wide parameter ranges which may make them interesting candidates for applications.

8.
Phys Rev Lett ; 121(20): 207701, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30500242

ABSTRACT

We present a Fermi liquid approach to superconducting Kondo problems applicable when the Kondo temperature is large compared to the superconducting gap. To illustrate the theory, we study the current-phase relation and the Andreev level spectrum for an Anderson impurity between two s-wave superconductors. In the particle-hole symmetric Kondo limit, we find a 4π periodic Andreev spectrum. The 4π periodicity persists under a small voltage bias which however causes an asymmetric distortion of Andreev levels. The latter distinguishes the present 4π effect from the one in topological Majorana junctions.

9.
Beilstein J Nanotechnol ; 9: 1659-1676, 2018.
Article in English | MEDLINE | ID: mdl-29977700

ABSTRACT

We present a theoretical analysis of the equilibrium Josephson current-phase relation in hybrid devices made of conventional s-wave spin-singlet superconductors (S) and topological superconductor (TS) wires featuring Majorana end states. Using Green's function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain or by a more microscopic spinful nanowire model. We show that for the simplest S-TS tunnel junction, only the s-wave pairing correlations in a spinful TS nanowire model can generate a Josephson effect. The critical current is much smaller in the topological regime and exhibits a kink-like dependence on the Zeeman field along the wire. When a correlated quantum dot (QD) in the magnetic regime is present in the junction region, however, the Josephson current becomes finite also in the deep topological phase as shown for the cotunneling regime and by a mean-field analysis. Remarkably, we find that the S-QD-TS setup can support φ0-junction behavior, where a finite supercurrent flows at vanishing phase difference. Finally, we also address a multi-terminal S-TS-S geometry, where the TS wire acts as tunable parity switch on the Andreev bound states in a superconducting atomic contact.

10.
Phys Rev Lett ; 113(7): 076404, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170717

ABSTRACT

We propose and study a setup realizing a stable manifold of non-Fermi-liquid states. The device consists of a mesoscopic superconducting island hosting N≥3 Majorana bound states tunnel coupled to normal leads, with a Josephson contact to a bulk superconductor. We find a nontrivial interplay between multichannel Kondo and resonant Andreev reflection processes, which results in the fixed point manifold. The scaling dimension of the leading irrelevant perturbation changes continuously within the manifold and determines the power-law scaling of the temperature-dependent conductance.

11.
Phys Rev Lett ; 112(18): 186603, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856711

ABSTRACT

We study electric dipole effects for massive Dirac fermions in graphene and related materials. The dipole potential accommodates towers of infinitely many bound states exhibiting a universal Efimov-like scaling hierarchy. The dipole moment determines the number of towers, but there is always at least one tower. The corresponding eigenstates show a characteristic angular asymmetry, observable in tunnel spectroscopy. However, charge transport properties inferred from scattering states are highly isotropic.

12.
Phys Rev Lett ; 110(19): 196401, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23705723

ABSTRACT

We study multiple helical nanowires in proximity to a common mesoscopic superconducting island, where Majorana fermion bound states are formed. We show that a weak finite charging energy of the center island may dramatically affect the low-energy behavior of the system. While for strong charging interactions, the junction decouples the connecting wires, interactions lower than a nonuniversal threshold may trigger the flow towards an exotic Kondo fixed point. In either case, the ideally Andreev reflecting fixed point characteristic for infinite capacitance (grounded) devices gets destabilized by interactions.

13.
Beilstein J Nanotechnol ; 3: 144-62, 2012.
Article in English | MEDLINE | ID: mdl-22428105

ABSTRACT

Nanoelectromechanical systems are characterized by an intimate connection between electronic and mechanical degrees of freedom. Due to the nanoscopic scale, current flowing through the system noticeably impacts upons the vibrational dynamics of the device, complementing the effect of the vibrational modes on the electronic dynamics. We employ the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium. For a slow mechanical mode the current can be obtained from the Landauer-Büttiker formula in the strictly adiabatic limit. The leading correction to the adiabatic limit reduces to Brouwer's formula for the current of a quantum pump in the absence of a bias voltage. The principal results of the present paper are the scattering-matrix expressions for the current-induced forces acting on the mechanical degrees of freedom. These forces control the Langevin dynamics of the mechanical modes. Specifically, we derive expressions for the (typically nonconservative) mean force, for the (possibly negative) damping force, an effective "Lorentz" force that exists even for time-reversal-invariant systems, and the fluctuating Langevin force originating from Nyquist and shot noise of the current flow. We apply our general formalism to several simple models that illustrate the peculiar nature of the current-induced forces. Specifically, we find that in out-of-equilibrium situations the current-induced forces can destabilize the mechanical vibrations and cause limit-cycle dynamics.

14.
Phys Rev Lett ; 107(3): 036804, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21838389

ABSTRACT

We develop a scattering theory of current-induced forces exerted by the conduction electrons of a general mesoscopic conductor on slow "mechanical" degrees of freedom. Our theory describes the current-induced forces both in and out of equilibrium in terms of the scattering matrix of the phase-coherent conductor. Under general nonequilibrium conditions, the resulting mechanical Langevin dynamics is subject to both nonconservative and velocity-dependent Lorentz-like forces, in addition to (possibly negative) friction. We illustrate our results with a two-mode model inspired by hydrogen molecules in a break junction which exhibits limit-cycle dynamics of the mechanical modes.

15.
Phys Rev Lett ; 105(17): 170601, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231031

ABSTRACT

Fluctuation relations establish rigorous identities for the nonequilibrium averages of observables. Starting from a general transport master equation with time-dependent rates, we employ the stochastic path integral approach to study statistical fluctuations around such averages. We show how under nonequilibrium conditions, rare realizations of transport observables are crucial and imply massive fluctuations that may completely mask such identities. Quantitative estimates for these fluctuations are provided. We illustrate our results on the paradigmatic example of a mesoscopic RC circuit.

16.
Phys Rev Lett ; 102(2): 026805, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257305

ABSTRACT

We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system.

17.
Phys Rev Lett ; 100(14): 140404, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518009

ABSTRACT

We revisit the problem of three identical bosons in free space, which exhibits a universal hierarchy of bound states (Efimov trimers). Modeling a narrow Feshbach resonance within a two-channel description, we map the integral equation for the three-body scattering amplitude to a one-dimensional Schrödinger-type single-particle equation, where an analytical solution of exponential accuracy is obtained. We give exact results for the trimer binding energies, the three-body parameter, the threshold to the three-atom continuum, and the recombination rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...