Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 254, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36894667

ABSTRACT

YgfB-mediated ß-lactam resistance was recently identified in multi drug resistant Pseudomonas aeruginosa. We show that YgfB upregulates expression of the ß-lactamase AmpC by repressing the function of the regulator of the programmed cell death pathway AlpA. In response to DNA damage, the antiterminator AlpA induces expression of the alpBCDE autolysis genes and of the peptidoglycan amidase AmpDh3. YgfB interacts with AlpA and represses the ampDh3 expression. Thus, YgfB indirectly prevents AmpDh3 from reducing the levels of cell wall-derived 1,6-anhydro-N-acetylmuramyl-peptides, required to induce the transcriptional activator AmpR in promoting the ampC expression and ß-lactam resistance. Ciprofloxacin-mediated DNA damage induces AlpA-dependent production of AmpDh3 as previously shown, which should reduce ß-lactam resistance. YgfB, however, counteracts the ß-lactam enhancing activity of ciprofloxacin by repressing ampDh3 expression and lowering the benefits of this drug combination. Altogether, YgfB represents an additional player in the complex regulatory network of AmpC regulation.


Subject(s)
Pseudomonas aeruginosa , beta-Lactam Resistance , Pseudomonas aeruginosa/genetics , beta-Lactam Resistance/genetics , Ciprofloxacin/pharmacology , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...