Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 12(12): 17330-42, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23443400

ABSTRACT

Optical waveguide lightmode spectroscopy (OWLS) is usually applied as a biosensor system to the sorption-desorption of proteins to waveguide surfaces. Here, we show that OWLS can be used to monitor the quality of oxide thin film materials and of coatings of pulsed laser deposition synthesized CdSe quantum dots (QDs) intended for solar energy applications. In addition to changes in data treatment and experimental procedure, oxide- or QD-coated waveguide sensors must be synthesized. We synthesized zinc stannate (Zn(2)SnO(4)) coated (Si,Ti)O(2) waveguide sensors, and used OWLS to monitor the relative mass of the film over time. Films lost mass over time, though at different rates due to variation in fluid flow and its physical effect on removal of film material. The Pulsed Laser Deposition (PLD) technique was used to deposit CdSe QD coatings on waveguides. Sensors exposed to pH 2 solution lost mass over time in an expected, roughly exponential manner. Sensors at pH 10, in contrast, were stable over time. Results were confirmed with atomic force microscopy imaging. Limiting factors in the use of OWLS in this manner include limitations on the annealing temperature that maybe used to synthesize the oxide film, and limitations on the thickness of the film to be studied. Nevertheless, the technique overcomes a number of difficulties in monitoring the quality of thin films in-situ in liquid environments.


Subject(s)
Biosensing Techniques , Lasers , Proteins/isolation & purification , Quantum Dots , Animals , Hydrogen-Ion Concentration , Solar Energy , Spectrum Analysis , Zinc/chemistry
2.
J Am Chem Soc ; 133(44): 17521-3, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21961793

ABSTRACT

We show that highly oxidizing valence band holes, produced by ultraviolet (UV) illumination of naturally occurring semiconducting minerals, are capable of oxidizing chloride ion to perchlorate in aqueous solutions at higher rates than other known natural perchlorate production processes. Our results support an alternative to atmospheric reactions leading to the formation of high concentrations of perchlorate on Mars.


Subject(s)
Chlorides/chemistry , Chlorides/radiation effects , Mars , Minerals/chemistry , Oxides/chemistry , Perchlorates/chemistry , Photochemical Processes/radiation effects , Minerals/radiation effects , Oxidation-Reduction/radiation effects , Oxides/radiation effects , Perchlorates/radiation effects , Ultraviolet Rays
3.
Sensors (Basel) ; 9(6): 4390-406, 2009.
Article in English | MEDLINE | ID: mdl-22408532

ABSTRACT

An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe(2+) ((aq)) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe(2+) ((aq)). Slopes of the response curves from ferrous iron standards (1 - 100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter.

4.
Science ; 320(5873): 184-5, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18403697
5.
J Colloid Interface Sci ; 303(2): 404-14, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16945384

ABSTRACT

The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.


Subject(s)
Cytochromes c/chemistry , Ferric Compounds/chemistry , Mitochondria/enzymology , Phosphates/chemistry , Absorption , Animals , Horses , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Myocardium/enzymology , Oxidation-Reduction , Static Electricity , Surface Properties
6.
J Colloid Interface Sci ; 274(2): 433-41, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15144814

ABSTRACT

The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with approximately 1.1 QH(2)/nm(2), but can be fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.

7.
J Colloid Interface Sci ; 274(2): 442-50, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15144815

ABSTRACT

The rate of reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution of hematite, especially by iron-reducing bacteria. It is possible that the rate of reductive dissolution of hematite in the presence of excess hydroquinone at pH 2.5 may be limited by the electron-transfer rate. Here, a reductive dissolution rate was measured and compared to electron-transfer rates calculated using Marcus theory. An experimental rate constant was measured at 9.5 x 10 (-6) s(-1) and the reaction order with respect to the hematite concentration was found to be 1.1. Both the dissolution rate and the reaction order of hematite concentration compare well with previous measurements. Of the Marcus theory calculations, the inner-sphere part of the reorganization energy and the electronic coupling matrix element for hydroquinone self-exchange electron transfer are calculated using ab initio methods. The second order self-exchange rate constant was calculated to be 1.3 x 10 (7) M(-1)s(-1), which compares well with experimental measurements. Using previously published data calculated for hexaquairon(III)/(II), the calculated electron-transfer rate for the cross reaction with hydroquinone also compares well to experimental measurements. A hypothetical reductive dissolution rate is calculated using the first-order electron-transfer rate constant and the concentration of total adsorbed quinone. Three different models of the hematite surface are used as well as multiple estimates for the reduction potential, the surface charge, and the adsorption density of hydroquinone. No calculated dissolution rate is less than five orders of magnitude faster than the experimentally measured one.

8.
Geochem Trans ; 5(2): 33, 2004.
Article in English | MEDLINE | ID: mdl-35412765

ABSTRACT

The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites). The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM) combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001) surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...