Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Proc Biol Sci ; 291(2024): 20232791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835273

ABSTRACT

Sociality underpins major evolutionary transitions and significantly influences the structure and function of complex ecosystems. Social insects, seen as the pinnacle of sociality, have traits like obligate sterility that are considered 'master traits', used as single phenotypic measures of this complexity. However, evidence is mounting that completely aligning both phenotypic and evolutionary social complexity, and having obligate sterility central to both, is erroneous. We hypothesize that obligate and functional sterility are insufficient in explaining the diversity of phenotypic social complexity in social insects. To test this, we explore the relative importance of these sterility traits in an understudied but diverse taxon: the termites. We compile the largest termite social complexity dataset to date, using specimen and literature data. We find that although functional and obligate sterility explain a significant proportion of variance, neither trait is an adequate singular proxy for the phenotypic social complexity of termites. Further, we show both traits have only a weak association with the other social complexity traits within termites. These findings have ramifications for our general comprehension of the frameworks of phenotypic and evolutionary social complexity, and their relationship with sterility.


Subject(s)
Isoptera , Social Behavior , Isoptera/physiology , Animals , Biological Evolution , Phenotype , Behavior, Animal
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673979

ABSTRACT

A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1ß; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1ß production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Immune Tolerance , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Female , Male , Immune Tolerance/drug effects , Middle Aged , Adult , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism
3.
Ecol Lett ; 27(4): e14423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584578

ABSTRACT

Forest litter decomposition is an essential component of global carbon and nutrient turnover. Invertebrates play important roles in litter decomposition, but the regional pattern of their effects is poorly understood. We examined 476 case studies across 93 sites and performed a meta-analysis to estimate regional effects of invertebrates on forest litter decomposition. We then assessed how invertebrate diversity, climate and soil pH drive regional variations in invertebrate-mediated decomposition. We found that (1) invertebrate contributions to litter decomposition are 1.4 times higher in tropical and subtropical forests than in forests elsewhere, with an overall contribution of 31% to global forest litter decomposition; and (2) termite diversity, together with warm, humid and acidic environments in the tropics and subtropics are positively associated with forest litter decomposition by invertebrates. Our results demonstrate the significant difference in invertebrate effects on mediating forest litter decomposition among regions. We demonstrate, also, the significance of termites in driving litter mass loss in the tropics and subtropics. These results are particularly pertinent in the tropics and subtropics where climate change and human disturbance threaten invertebrate biodiversity and the ecosystem services it provides.


Subject(s)
Ecosystem , Forests , Animals , Biodiversity , Invertebrates , Plant Leaves , Soil/chemistry
4.
J Anim Ecol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38596843

ABSTRACT

Functional redundancy, the potential for the functional role of one species to be fulfilled by another, is a key determinant of ecosystem viability. Scavenging transfers huge amount of energy through ecosystems and is, therefore, crucial for ecosystem viability and healthy ecosystem functioning. Despite this, relatively few studies have examined functional redundancy in scavenger communities. Moreover, the results of these studies are mixed and confined to a very limited range of habitat types and taxonomic groups. This study attempts to address this knowledge gap by conducting a field experiment in an undisturbed natural environment assessing functional roles and redundancy in vertebrate and invertebrate scavenging communities in a South African savanna. We used a large-scale field experiment to suppress ants in four 1 ha plots in a South African savanna and paired each with a control plot. We distributed three types of small food bait: carbohydrate, protein and seed, across the plots and excluded vertebrates from half the baits using cages. Using this combination of ant suppression and vertebrate exclusion, allowed us explore the contribution of non-ant invertebrates, ants and vertebrates in scavenging and also to determine whether either ants or vertebrates were able to compensate for the loss of one another. In this study, we found the invertebrate community carried out a larger proportion of overall scavenging services than vertebrates. Moreover, although scavenging was reduced when either invertebrates or vertebrates were absent, the presence of invertebrates better mitigated the functional loss of vertebrates than did the presence of vertebrates against the functional loss of invertebrates. There is a commonly held assumption that the functional role of vertebrate scavengers exceeds that of invertebrate scavengers; our results suggest that this is not true for small scavenging resources. Our study highlights the importance of invertebrates for securing healthy ecosystem functioning both now and into the future. We also build upon many previous studies which show that ants can have particularly large effects on ecosystem functioning. Importantly, our study suggests that scavenging in some ecosystems may be partly resilient to changes in the scavenging community, due to the potential for functional compensation by vertebrates and ants.

5.
New Phytol ; 241(3): 1047-1061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087814

ABSTRACT

Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.


Subject(s)
Ecosystem , Forests , Biomass , Australia , Trees , Wood , Carbon , Tropical Climate
6.
Biomedicines ; 11(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37239045

ABSTRACT

BACKGROUND: Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2'3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. METHODS: Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer's disease (n = 6), Parkinson's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-ß, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1-400 µM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-ß release and changes in ICAM-1 integrin expression. RESULTS: In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander's coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-ß was observed, but it failed to reach statistical significance. CONCLUSIONS: The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics.

7.
J Cell Mol Med ; 27(3): 322-339, 2023 02.
Article in English | MEDLINE | ID: mdl-36651415

ABSTRACT

Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an 'eat-me' signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Humans , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents
8.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397002

ABSTRACT

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Subject(s)
Ecosystem , Soil , Biodiversity , Soil Microbiology , Biota
9.
Science ; 377(6613): 1440-1444, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137034

ABSTRACT

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Subject(s)
Forests , Global Warming , Isoptera , Wood , Animals , Carbon Cycle , Temperature , Tropical Climate , Wood/microbiology
10.
J Anim Ecol ; 91(4): 766-779, 2022 04.
Article in English | MEDLINE | ID: mdl-35157309

ABSTRACT

The most diverse and abundant family of termites, the Termitidae, evolved in African tropical forests. They have since colonised grassy biomes such as savannas. These open environments have more extreme conditions than tropical forests, notably wider extremes of temperature and lower precipitation levels and greater temporal fluctuations (of both annual and diurnal variation). These conditions are challenging for soft-bodied ectotherms, such as termites, to survive in, let alone become as ecologically dominant as termites have. Here, we quantified termite thermal limits to test the hypothesis that these physiological limits are wider in savanna termite species to facilitate their existence in savanna environments. We sampled termites directly from mound structures, across an environmental gradient in Ghana, ranging from wet tropical forest through to savanna. At each location, we quantified both the Critical Thermal Maxima (CTmax ) and the Critical Thermal Minima (CTmin ) of all the most abundant mound-building Termitidae species in the study areas. We modelled the thermal limits in two separate mixed-effects models against canopy cover at the mound, temperature and rainfall, as fixed effects, with sampling location as a random intercept. For both CTmax and CTmin , savanna species had significantly more extreme thermal limits than forest species. Between and within environments, areas with higher amounts of canopy cover were significantly associated with lower CTmax values of the termite colonies. CTmin was significantly positively correlated with rainfall. Temperature was retained in both models; however, it did not have a significant relationship in either. Sampling location explained a large proportion of the residual variation, suggesting there are other environmental factors that could influence termite thermal limits. Our results suggest that savanna termite species have wider thermal limits than forest species. These physiological differences, in conjunction with other behavioural adaptations, are likely to have enabled termites to cope with the more extreme environmental conditions found in savanna environments and facilitated their expansion into open tropical environments.


Subject(s)
Isoptera , Animals , Ecosystem , Forests , Grassland , Isoptera/physiology , Temperature
11.
Cancer Immunol Immunother ; 71(7): 1655-1669, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34800147

ABSTRACT

BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.


Subject(s)
Calreticulin , Endoplasmic Reticulum Stress , Ovarian Neoplasms , Apoptosis , Calreticulin/metabolism , Carcinoma, Ovarian Epithelial , Female , Fluorescein-5-isothiocyanate , Humans , Thapsigargin/pharmacology
12.
PLoS One ; 16(8): e0241945, 2021.
Article in English | MEDLINE | ID: mdl-34460828

ABSTRACT

Abundance and distribution of earthworms in agricultural fields is frequently proposed as a measure of soil quality assuming that observed patterns of abundance are in response to improved or degraded environmental conditions. However, it is not clear that earthworm abundances can be directly related to their edaphic environment, as noted in Darwin's final publication, perhaps limiting or restricting their value as indicators of ecological quality in any given field. We present results from a spatially explicit intensive survey of pastures within United Kingdom farms, looking for the main drivers of earthworm density at a range of scales. When describing spatial variability of both total and ecotype-specific earthworm abundance within any given field, the best predictor was earthworm abundance itself within 20-30 m of the sampling point; there were no consistent environmental correlates with earthworm numbers, suggesting that biological factors (e.g. colonisation rate, competition, predation, parasitism) drive or at least significantly modify earthworm distributions at this spatial level. However, at the national scale, earthworm abundance is well predicted by soil nitrate levels, density, temperature and moisture content, albeit not in a simple linear fashion. This suggests that although land can be managed at the farm scale to promote earthworm abundance and the resulting soil processes that deliver ecosystem services, within a field, earthworm distributions will remain patchy. The use of earthworms as soil quality indicators must therefore be carried out with care, ensuring that sufficient samples are taken within field to take account of variability in earthworm populations that is unrelated to soil chemical and physical properties.


Subject(s)
Oligochaeta/physiology , Soil/chemistry , Agriculture/methods , Animals , Biodiversity , Ecosystem , Farms , United Kingdom
13.
New Phytol ; 231(6): 2142-2149, 2021 09.
Article in English | MEDLINE | ID: mdl-34128548

ABSTRACT

Soil invertebrates make significant contributions to the recycling of dead plant material across the globe. However, studies focussed on the consequences of decomposition for plant communities largely ignore soil fauna across all ecosystems, because microbes are often considered the primary agents of decay. Here, we explore the role of invertebrates as not simply facilitators of microbial decomposition, but as true decomposers, able to break down dead organic matter with their own endogenic enzymes, with direct and indirect impacts on the soil environment and plants. We recommend a holistic view of decomposition, highlighting how invertebrates and microbes act in synergy to degrade organic matter, providing ecological services that underpin plant growth and survival.


Subject(s)
Ecosystem , Soil , Animals , Invertebrates , Plants , Soil Microbiology
14.
Microorganisms ; 9(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807993

ABSTRACT

Many lowland rainforests in Southeast Asia are severely altered by selective logging and there is a need for rapid assessment methods to identify characteristic communities of old growth forests and to monitor restoration success in regenerating forests. We have studied the effect of logging on the diversity and composition of lichen communities on trunks of trees in lowland rainforests of northeast Borneo dominated by Dipterocarpaceae. Using data from field observations and vouchers collected from plots in disturbed and undisturbed forests, we compared a taxonomy-based and a taxon-free method. Vouchers were identified to genus or genus group and assigned to functional groups based on sets of functional traits. Both datasets allowed the detection of significant differences in lichen communities between disturbed and undisturbed forest plots. Bark type diversity and the proportion of large trees, particularly those belonging to the family Dipterocarpaceae, were the main drivers of lichen community structure. Our results confirm the usefulness of a functional groups approach for the rapid assessment of tropical lowland rainforests in Southeast Asia. A high proportion of Dipterocarpaceae trees is revealed as an essential element for the restoration of near natural lichen communities in lowland rainforests of Southeast Asia.

15.
Glob Chang Biol ; 27(8): 1601-1613, 2021 04.
Article in English | MEDLINE | ID: mdl-33506557

ABSTRACT

Tree mortality rates are increasing within tropical rainforests as a result of global environmental change. When trees die, gaps are created in forest canopies and carbon is transferred from the living to deadwood pools. However, little is known about the effect of tree-fall canopy gaps on the activity of decomposer communities and the rate of deadwood decay in forests. This means that the accuracy of regional and global carbon budgets is uncertain, especially given ongoing changes to the structure of rainforest ecosystems. Therefore, to determine the effect of canopy openings on wood decay rates and regional carbon flux, we carried out the first assessment of deadwood mass loss within canopy gaps in old-growth rainforest. We used replicated canopy gaps paired with closed canopy sites in combination with macroinvertebrate accessible and inaccessible woodblocks to experimentally partition the relative contribution of microbes vs. termites to decomposition within contrasting understorey conditions. We show that over a 12 month period, wood mass loss increased by 63% in canopy gaps compared with closed canopy sites and that this increase was driven by termites. Using LiDAR data to quantify the proportion of canopy openings in the study region, we modelled the effect of observed changes in decomposition within gaps on regional carbon flux. Overall, we estimate that this accelerated decomposition increases regional wood decay rate by up to 18.2%, corresponding to a flux increase of 0.27 Mg C ha-1  year-1 that is not currently accounted for in regional carbon budgets. These results provide the first insights into how small-scale disturbances in rainforests can generate hotspots for decomposer activity and carbon fluxes. In doing so, we show that including canopy gap dynamics and their impacts on wood decomposition in forest ecosystems can help improve the predictive accuracy of the carbon cycle in land surface models.


Subject(s)
Rainforest , Trees , Carbon , Carbon Cycle , Ecosystem , Forests , Tropical Climate
17.
FASEB J ; 34(12): 16662-16675, 2020 12.
Article in English | MEDLINE | ID: mdl-33124722

ABSTRACT

We previously showed that calnexin (Canx)-deficient mice are desensitized to experimental autoimmune encephalomyelitis (EAE) induction, a model that is frequently used to study inflammatory demyelinating diseases, due to increased resistance of the blood-brain barrier to immune cell transmigration. We also discovered that Fabp5, an abundant cytoplasmic lipid-binding protein found in brain endothelial cells, makes protein-protein contact with the cytoplasmic C-tail domain of Canx. Remarkably, both Canx-deficient and Fabp5-deficient mice commonly manifest resistance to EAE induction. Here, we evaluated the importance of Fabp5/Canx interactions on EAE pathogenesis and on the patency of a model blood-brain barrier to T-cell transcellular migration. The results demonstrate that formation of a complex comprised of Fabp5 and the C-tail domain of Canx dictates the permeability of the model blood-brain barrier to immune cells and is also a prerequisite for EAE pathogenesis.


Subject(s)
Calnexin/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fatty Acid-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Line , Cell Movement/physiology , Disease Models, Animal , Endothelial Cells/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Permeability
18.
Biol Rev Camb Philos Soc ; 95(5): 1418-1441, 2020 10.
Article in English | MEDLINE | ID: mdl-32525288

ABSTRACT

Social insects, i.e. ants, bees, wasps and termites, are key components of ecological communities, and are important ecosystem services (ESs) providers. Here, we review the literature in order to (i) analyse the particular traits of social insects that make them good suppliers of ESs; (ii) compile and assess management strategies that improve the services provided by social insects; and (iii) detect gaps in our knowledge about the services that social insects provide. Social insects provide at least 10 ESs; however, many of them are poorly understood or valued. Relevant traits of social insects include high biomass and numerical abundance, a diversity of mutualistic associations, the ability to build important biogenic structures, versatile production of chemical defences, the simultaneous delivery of several ESs, the presence of castes and division of labour, efficient communication and cooperation, the capacity to store food, and a long lifespan. All these characteristics enhance social insects as ES providers, highlighting their potential, constancy and efficiency as suppliers of these services. In turn, many of these traits make social insects stress tolerant and easy to manage, so increasing the ESs they provide. We emphasise the need for a conservation approach to the management of the services, as well as the potential use of social insects to help restore habitats degraded by human activities. In addition, we stress the need to evaluate both services and disservices in an integrated way, because some species of social insects are among the most problematic invasive species and native pests. Finally, we propose two areas of research that will lead to a greater and more efficient use of social insects as ES providers, and to a greater appreciation of them by producers and decision-makers.


Subject(s)
Ants , Wasps , Animals , Bees , Ecosystem , Insecta , Phenotype
19.
Mult Scler Relat Disord ; 43: 102084, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32442882

ABSTRACT

BACKGROUND: Thousands of people with multiple sclerosis (MS) have used self-administered oxygen therapy in the UK. Clinical trials have been performed, with scant evidence that people with MS have been consulted to explore how they benefit from or how to optimize this treatment. The conventional MS disease disability scores used in trials seldom reflect the effects individuals report when using oxygen therapy to treat their symptoms. METHODS: Three people with MS and the manager of an MS Centre formed a public involvement group and collaborated with clinicians and scientists to inform a lab-based study to investigate the physiological effects of oxygen therapy on microvascular brain endothelial cells. RESULTS: People with MS often use oxygen therapy at a later stage when their symptoms worsen and only after using other treatments. The frequency of oxygen therapy sessions and hyperbaric pressure is individualized and varies for people with MS. Despite direct comparisons of efficacy proving difficult, most individuals are exposed to 100% O2 at 1.5 atmosphere absolute (ATA; 1140 mmHg absolute) for 60 min. In a laboratory-based study human brain endothelial cells were exposed in vitro to 152 mmHg O2 for 60 min with and without pressure, as this equates to 20% O2 achievable via hyperbarics, which was then replicated at atmospheric pressure. A significant reduction in endothelial cells ICAM-1 (CD54) implicated in inflammatory cell margination across the blood brain barrier was observed under oxygen treatment. CONCLUSIONS: By collaborating with people living with MS, we were able to design laboratory-based experimental protocols that replicate their treatment regimens to advance our understanding of the physiological effects of hyperbaric oxygen treatment on brain cells and their role in neuroinflammation.


Subject(s)
Hyperbaric Oxygenation , Multiple Sclerosis , Brain , Endothelial Cells , Humans , Multiple Sclerosis/therapy , Oxygen
20.
J Anim Ecol ; 89(2): 347-359, 2020 02.
Article in English | MEDLINE | ID: mdl-31637702

ABSTRACT

Gradients in cuticle lightness of ectotherms have been demonstrated across latitudes and elevations. Three key hypotheses have been used to explain these macroecological patterns: the thermal melanism hypothesis (TMH), the melanism-desiccation hypothesis (MDH) and the photo-protection hypothesis (PPH). Yet the broad abiotic measures, such as temperature, humidity and UV-B radiation, typically used to detect these ecogeographical patterns, are a poor indication of the microenvironment experienced by small, cursorial ectotherms like ants. We tested whether these macroecological hypotheses explaining cuticle lightness held at habitat and microclimatic level by using a vertical gradient within a tropical rainforest. We sampled 222 ant species in lowland, tropical rainforest across four vertical strata: subterranean, ground, understory and canopy. We recorded cuticle lightness, abundance and estimated body size for each species and calculated an assemblage-weighted mean for cuticle lightness and body size for each vertical stratum. Abiotic variables (air temperature, vapour pressure deficit and UV-B radiation) were recorded for each vertical stratum. We found that cuticle lightness of ant assemblages was vertically stratified: ant assemblages in the canopy and understory were twice as dark as assemblages in ground and subterranean strata. Cuticle lightness was not correlated with body size, and there was no support for the TMH. Rather, we attribute this cline in cuticle lightness to a combination of the MDH and the PPH. Our findings indicate that broad macroecological patterns can be detected at much smaller spatial scales and that microclimatic gradients can shape trait variation, specifically the cuticle lightness of ants. These results suggest that any changes to microclimate that occur due to land-use change or climate warming could drive selection of ants based on cuticle colour, altering assemblage structure and potentially ecosystem functioning.


Subject(s)
Ants , Microclimate , Animals , Color , Ecosystem , Rainforest
SELECTION OF CITATIONS
SEARCH DETAIL
...