Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(9): 1885-1898, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36053778

ABSTRACT

Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoid malignancies associated with poor prognosis due to ineffective treatment options and high rates of relapse. The success of chimeric antigen receptor T-cell (CART) therapy for certain hematologic malignancies makes it an attractive treatment option for PTCLs. However, shared expression of potential target antigens by both malignant and healthy T cells poses a challenge. Current prospective CART approaches cause a high degree of on-target, off-tumor activity, resulting in fratricide during CART expansion, depletion of healthy T cells in vivo, and immune compromise in the patient. To limit off-tumor targeting, we sought to develop a CART platform specific for a given T-cell receptor vß (TCRvß) family that would endow CAR-modified T cells with the ability to mediate lysis of the clonal malignant population while preserving the majority of healthy T cells. Here, CAR constructs specific for multiple TCRvß family members were designed and validated. Our results demonstrate that TCRvß-family-specific CARTs (TCRvß-CARTs) recognize and kill TCRvß-expressing target cells. This includes specific self-depletion of the targeted cell subpopulation in the CART product and lysis of cell lines engineered to express a target TCRvß family. Furthermore, TCRvß-CARTs eliminated the dominant malignant TCRvß clone in 2 patient samples. Finally, in immunodeficient mice, TCRvß-CARTs eradicated malignant cells in a TCRvß-dependent manner. Importantly, the nontargeted TCRvß families were spared in all cases. Thus, TCRvß-CART therapy provides a potential option for high-precision treatment of PTCL with limited healthy T-cell depletion.


Subject(s)
Lymphoma, T-Cell, Peripheral , Receptors, Chimeric Antigen , Mice , Animals , T-Lymphocytes , Neoplasm Recurrence, Local , Receptors, Antigen, T-Cell/genetics , Lymphoma, T-Cell, Peripheral/therapy , Clone Cells
2.
Mol Cancer Ther ; 21(2): 371-381, 2022 02.
Article in English | MEDLINE | ID: mdl-34866044

ABSTRACT

Treatment of advanced ovarian cancer using PD-1/PD-L1 immune checkpoint blockade shows promise; however, current clinical trials are limited by modest response rates. Radiotherapy has been shown to synergize with PD-1/PD-L1 blockade in some cancers but has not been utilized in advanced ovarian cancer due to toxicity associated with conventional abdominopelvic irradiation. Ultrahigh-dose rate (FLASH) irradiation has emerged as a strategy to reduce radiation-induced toxicity, however, the immunomodulatory properties of FLASH irradiation remain unknown. Here, we demonstrate that single high-dose abdominopelvic FLASH irradiation promoted intestinal regeneration and maintained tumor control in a preclinical mouse model of ovarian cancer. Reduced tumor burden in conventional and FLASH-treated mice was associated with an early decrease in intratumoral regulatory T cells and a late increase in cytolytic CD8+ T cells. Compared with conventional irradiation, FLASH irradiation increased intratumoral T-cell infiltration at early timepoints. Moreover, FLASH irradiation maintained the ability to increase intratumoral CD8+ T-cell infiltration and enhance the efficacy of αPD-1 therapy in preclinical models of ovarian cancer. These data highlight the potential for FLASH irradiation to improve the therapeutic efficacy of checkpoint inhibition in the treatment of ovarian cancer.


Subject(s)
Ovarian Neoplasms , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/radiotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors
3.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396988

ABSTRACT

Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-ß signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.


Subject(s)
Osteopontin/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Epithelium/drug effects , Epithelium/metabolism , Epithelium/pathology , Female , Humans , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Osteopontin/antagonists & inhibitors , Ovarian Neoplasms/pathology , Paracrine Communication/drug effects , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays
4.
Sci Rep ; 10(1): 21600, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303827

ABSTRACT

Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.


Subject(s)
Gastrointestinal Tract/radiation effects , Ovarian Neoplasms/radiotherapy , Radiation Injuries, Experimental/prevention & control , Radiotherapy/methods , Animals , Female , Gastrointestinal Tract/injuries , Gastrointestinal Tract/pathology , Mice , Mice, Inbred C57BL , Radiotherapy/adverse effects
5.
Cancer Res ; 79(9): 2271-2284, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862717

ABSTRACT

Peritoneal metastases are the leading cause of morbidity and mortality in high-grade serous ovarian cancer (HGSOC). Accumulating evidence suggests that mesothelial cells are an important component of the metastatic microenvironment in HGSOC. However, the mechanisms by which mesothelial cells promote metastasis are unclear. Here, we report that the HGSOC tumor-mesothelial niche was hypoxic, and hypoxic signaling enhanced collagen I deposition by mesothelial cells. Specifically, hypoxic signaling increased expression of lysyl oxidase (LOX) in mesothelial and ovarian cancer cells to promote collagen crosslinking and tumor cell invasion. The mesothelial niche was enriched with fibrillar collagen in human and murine omental metastases. Pharmacologic inhibition of LOX reduced tumor burden and collagen remodeling in murine omental metastases. These findings highlight an important role for hypoxia and mesothelial cells in the modification of the extracellular matrix and tumor invasion in HGSOC. SIGNIFICANCE: This study identifies HIF/LOX signaling as a potential therapeutic target to inhibit collagen remodeling and tumor progression in HGSOC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2271/F1.large.jpg.


Subject(s)
Collagen/metabolism , Cystadenocarcinoma, Serous/secondary , Epithelium/physiopathology , Extracellular Matrix/metabolism , Hypoxia/physiopathology , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/secondary , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Prognosis , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
6.
Bone ; 119: 36-41, 2019 02.
Article in English | MEDLINE | ID: mdl-29551752

ABSTRACT

The regulation of erythropoiesis in the bone marrow microenvironment is a carefully orchestrated process that is dependent upon both systemic and local cues. Systemic erythropoietin (EPO) production by renal interstitial cells plays a critical role in maintaining erythropoietic homeostasis. In addition, there is increasing clinical and preclinical data linking changes in EPO and erythropoiesis to altered skeletal homeostasis, suggesting a functional relationship between the regulation of erythropoiesis and bone homeostasis. As key local components of the bone marrow microenvironment and erythropoietic niche, macrophage subsets play important roles in both processes. In this review, we summarize our current understanding of the cellular and molecular mechanisms that may facilitate the coordinated regulation of erythropoiesis and bone homeostasis.


Subject(s)
Bone and Bones/metabolism , Erythropoiesis , Erythropoietin/metabolism , Macrophages/metabolism , Animals , Homeostasis , Humans , Models, Biological
7.
Oncotarget ; 7(43): 70738-70749, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27683113

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a highly invasive and metastatic malignancy. The nerve growth factor receptor (NGFR) has been observed to be expressed on a subset of cells in OSCC, and NGFR+ cells have greater tumor-initiating capacity in vivo. Further, inhibition of NGFR reduces tumor growth, indicating a functional role of this receptor; however, the mechanisms by which NGFR confers enhanced tumor formation are not known. Here, we used an established murine model of OSCC and gene expression array analysis to identify ESM1 as a downstream target gene of NGFR, critical for tumor invasion and metastasis. ESM1 encodes a protein called endocan, which has the property of regulating proliferation, differentiation, migration, and adhesion of different cell types. Incubation of NGFR+ murine OSCC cells with nerve growth factor resulted in increased expression of ESM1. Importantly, ESM1 overexpression conferred an enhanced migratory, invasive, and metastatic phenotype, similar to what has been correlated with NGFR expression. Conversely, shRNA knockdown of ESM1 in NGFR overexpressing OSCC cells abrogated the tumor growth kinetics and the invasive and metastatic properties associated with NGFR. Together, our data indicate that NGFR plays an important role in the pathogenesis and progression of OSCC via regulation of ESM1.


Subject(s)
Carcinoma, Squamous Cell/pathology , Lung Neoplasms/pathology , Mouth Neoplasms/pathology , Neoplasm Invasiveness/pathology , Proteoglycans/metabolism , Receptor, Nerve Growth Factor/metabolism , Animals , Carcinoma, Squamous Cell/secondary , Cell Line, Tumor , Cell Movement , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lung Neoplasms/secondary , Mice , Nerve Growth Factor/metabolism , Proteoglycans/genetics , RNA Interference , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
8.
PLoS Pathog ; 10(12): e1004536, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474690

ABSTRACT

Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Replication , DNA, Viral/biosynthesis , Simian virus 40/physiology , Virus Replication/physiology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line , DNA, Viral/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...