Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 34(2): 855-864, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37392364

ABSTRACT

In malaria-prone developing countries the integrity of Anti-Malarial Herbal Drugs (AMHDs) which are easily preferred for treatment can be compromised. Currently, existing techniques for identifying AMHDs are destructive. We report on the use of non-destructive and sensitive technique, Laser-Induced-Autofluorescence (LIAF) in combination with multivariate algorithms for identification of AMHDs. The LIAF spectra were recorded from commercially prepared decoction AMHDs purchased from accredited pharmacy shop in Ghana. Deconvolution of the LIAF spectra revealed secondary metabolites belonging to derivatives of alkaloids and classes of phenolic compounds of the AMHDs. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were able to discriminate the AMHDs base on their physicochemical properties. Based on two principal components, the PCA- QDA (Quadratic Discriminant Analysis), PCA-LDA (Linear Discriminant Analysis), PCA-SVM (Support Vector Machine) and PCA-KNN (K-Nearest Neighbour) models were developed with an accuracy performance of 99.0, 99.7, 100.0, and 100%, respectively, in identifying AMHDs. PCA-SVM and PCA-KNN provided the best classification and stability performance. The LIAF technique in combination with multivariate techniques may offer a non-destructive and viable tool for AMHDs identification.


Subject(s)
Antimalarials , Algorithms , Discriminant Analysis , Principal Component Analysis , Support Vector Machine , Lasers
2.
J Fluoresc ; 34(1): 367-380, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37266836

ABSTRACT

Exposure of antimalarial herbal drugs (AMHDs) to ultraviolet radiation (UVR) affects the potency and integrity of the AMHDs. Instant classification of the AMHDs exposed to UVR (UVR-AMHDs) from unexposed ones (Non-UVR-AMHDs) would be beneficial for public health safety, especially in warm regions. For the first time, this work combined laser-induced autofluorescence (LIAF) with chemometric techniques to classify UVR-AMHDs from Non-UVR-AMHDs. LIAF spectra data were recorded from 200 ml of each of the UVR-AMHDs and Non-UVR-AMHDs. To extract useful data from the spectra fingerprint, principal components (PCs) analysis was used. The performance of five chemometric algorithms: random forest (RF), neural network (NN), support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbour (KNN), were compared after optimization by validation. The chemometric algorithms showed that KNN, SVM, NN, and RF were superior with a classification accuracy of 100% for UVR-AMHDs while LDA had a classification accuracy of 98.8% after standardization of the spectra data and was used as an input variable for the model. Meanwhile, a classification accuracy of 100% was obtained for KNN, LDA, SVM, and NN when the raw spectra data was used as input except for RF for which a classification accuracy of 99.9% was obtained. Classification accuracy above 99.74 ± 0.26% at 3 PCs in both the training and testing sets were obtained from the chemometric models. The results showed that the LIAF, combined with the chemometric techniques, can be used to classify UVR-AMHDs from Non-UVR-AMHDs for consumer confidence in malaria-prone regions. The technique offers a non-destructive, rapid, and viable tool for identifying UVR-AMHDs in resource-poor countries.


Subject(s)
Antimalarials , Ultraviolet Rays , Chemometrics , Discriminant Analysis , Lasers , Support Vector Machine
3.
J Fluoresc ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971609

ABSTRACT

The craving for organic cocoa beans has resulted in fraudulent practices such as mislabeling, adulteration, all known as food fraud, prompting the international cocoa market to call for the authenticity of organic cocoa beans before export. In this study, we proposed robust models using laser-induced fluorescence (LIF) and chemometric techniques for rapid classification of cocoa beans as either organic or conventional. The LIF measurements were conducted on cocoa beans harvested from organic and conventional farms. From the results, conventional cocoa beans exhibited a higher fluorescence intensity compared to organic ones. In addition, a general peak wavelength shift was observed when the cocoa beans were excited using a 445 nm laser source. These results highlight distinct characteristics that can be used to differentiate between organic and conventional cocoa beans. Identical compounds were found in the fluorescence spectra of both the organic and conventional ones. With preprocessed fluorescence spectra data and utilizing principal component analysis, classification models such as Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Neural Network (NN) and Random Forest (RF) models were employed. LDA and NN models yielded 100.0% classification accuracy for both training and validation sets, while 99.0% classification accuracy was achieved in the training and validation sets using SVM and RF models. The results demonstrate that employing a combination of LIF and either LDA or NN can be a reliable and efficient technique to classify authentic cocoa beans as either organic or conventional. This technique can play a vital role in maintaining integrity and preventing fraudulent practices in the cocoa bean supply chain.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C27-C32, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175728

ABSTRACT

Laser-induced autofluorescence (LIAF), combined with multivariate techniques, has been used to discriminate a cataractous lens from healthy lens tissues. In this study, 405 nm and 445 nm were used as excitation sources to induce the autofluorescence. Results show higher autofluorescence intensity in cataractous lens tissues than in healthy ones. Cataractous lens tissues show a red shift of 0.9 nm and 1.2 nm at 405 nm and 445 nm excitations, respectively. Using principal component analysis (PCA), three principal components (PCs) gave more than 99% variability for both 405 nm and 445 nm excitation sources. Based on the three PCs, Fisher's linear discriminant model was developed. An accuracy of 100% was obtained in classifying the lens tissues using Fisher's linear discriminant analysis (FLDA). The LIAF technique assisted by PCA and FLDA may be used for objective discrimination of cataractous lens from healthy lens tissues of Sprague-Dawley rats.


Subject(s)
Cataract/diagnosis , Cataract/metabolism , Fluorescence , Lasers , Lens, Crystalline/metabolism , Animals , Discriminant Analysis , Multivariate Analysis , Principal Component Analysis , Rats , Rats, Sprague-Dawley
5.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C103-C110, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175736

ABSTRACT

Laser-induced fluorescence (LIF) combined with multivariate techniques has been used in identifying antimalarial herbal plants (AMHPs) based on their geographical origin. The AMHP samples were collected from four geographical origins (Abrafo, Jukwa, Nfuom, and Akotokyere) in the Cape Coast Metropolis, Ghana. LIF spectra data were recorded from the AMHP samples. Utilizing multivariate techniques, a training set for the first two principal components of the AMHP spectra data was modeled through the use of K-nearest neighbor (KNN), support vector nachine (SVM), and linear discriminant analysis (LDA) methods. The SVM and KNN methods performed best with 100% success for the prediction data, while the LDA had a 99% success rate. The KNN and SVM methods are recommended for the identification of AMHPs based on their geographical origins. Deconvoluted peaks from the LIF spectra of all the AMHP samples revealed compounds such as quercetin and berberine as being present in all the AMHP samples.


Subject(s)
Antimalarials/chemistry , Fluorescence , Geography , Herbal Medicine/classification , Lasers , Discriminant Analysis , Multivariate Analysis , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...