Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 21(5): e2000402, 2021 05.
Article in English | MEDLINE | ID: mdl-33759338

ABSTRACT

Porous polymer materials derived from poly(ethylene glycol dimethacrylate) (poly-EGDMA) and antibiotic containing polylactide (PLA) are obtained for the first time. Porous poly-EGDMA monoliths with a system of open interconnected pores are synthesized by a visible light-induced radical polymerization of EGDMA in the presence of 70 wt% of porogenic agent, e.g., 1-butanol, 1-hexanol, 1-octanol, or cyclohexanol. The porosity of the obtained polymers is 75-78%. A modal pore size depends on the nature of the porogen and varies from 0.5 µm (cyclohexanol) to 12 µm (1-butanol). The polymer matrix made with 1-butanol features the presence of pores ranging from 1 to 100 µm. The pore surface of poly-EGDMA matrices is inlayered with poly-D,L-lactide (Mn  23 × 103  Da, PDI 1.31). The PLA-modified poly-EGDMA retains a porous structure that is similar to the initial poly-EGDMA but with improved strength characteristics. The presence of antibiotic containing PLA ensures a high and continuous antibacterial activity of the hybrid polymeric material for 7 days. The nontoxicity of all the porous matrices studied makes them promising for clinical tests as osteoplastic materials.


Subject(s)
Anti-Bacterial Agents/chemistry , Methacrylates/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Tissue Scaffolds , Coated Materials, Biocompatible , In Vitro Techniques , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Porosity , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...