Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(12): 120501, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179183

ABSTRACT

Shor's factoring algorithm provides a superpolynomial speedup over all known classical factoring algorithms. Here, we address the question of which quantum properties fuel this advantage. We investigate a sequential variant of Shor's algorithm with a fixed overall structure and identify the role of coherence for this algorithm quantitatively. We analyze this protocol in the framework of dynamical resource theories, which capture the resource character of operations that can create and detect coherence. This allows us to derive a lower and an upper bound on the success probability of the protocol, which depend on rigorously defined measures of coherence as a dynamical resource. We compare these bounds with the classical limit of the protocol and conclude that within the fixed structure that we consider, coherence is the quantum resource that determines its performance by bounding the success probability from below and above. Therefore, we shine new light on the fundamental role of coherence in quantum computation.

2.
Phys Rev E ; 105(4-1): 044147, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590656

ABSTRACT

A bit reset is a basic operation in irreversible computing. This costs work and dissipates energy in the computer, creating a limit on speeds and energy efficiency of future irreversible computers. It was recently shown by Zhen et al. [Phys. Rev. Lett. 127, 190602 (2021)0031-900710.1103/PhysRevLett.127.190602] that for a finite-time reset protocol, the additional work on top of the quasistatic protocol can always be minimized by considering a two-level system, and then be lower bounded through a thermodynamical speed limit. An important question is to understand under what protocol parameters, including a bit reset error and maximum energy shift, this penalty decreases exponentially vs inverse linearly in the protocol time. Here we provide several analytical results to address this question, as well as numerical simulations of specific examples of protocols.

3.
Phys Rev Lett ; 127(19): 190602, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797137

ABSTRACT

We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers. We formulate a hardware-independent expression for this limit in the framework of stochastic processes. We derive a closed-form lower bound on the work penalty as a function of the time taken for the protocol and bit reset error. It holds for discrete as well as continuous systems, assuming only that the master equation respects detailed balance.

4.
Phys Rev Lett ; 125(6): 060404, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845691

ABSTRACT

Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from the measurement statistics. Based on a recently developed resource theory of quantum operations, here we quantify experimentally the ability of a typical quantum-optical detector, the weak-field homodyne detector, to detect coherence. We derive an improved algorithm for quantum detector tomography and apply it to reconstruct the positive-operator-valued measures of the detector in different configurations. The reconstructed positive-operator-valued measures are then employed to evaluate how well the detector can detect coherence using two computable measures. As the first experimental investigation of quantum measurements from a resource theoretical perspective, our work sheds new light on the rigorous evaluation of the performance of a quantum measurement apparatus.

5.
Phys Rev Lett ; 122(19): 190405, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144929

ABSTRACT

To describe certain facets of nonclassicality, it is necessary to quantify properties of operations instead of states. This is the case if one wants to quantify how well an operation detects nonclassicality, which is a necessary prerequisite for its use in quantum technologies. To do so rigorously, we build resource theories on the level of operations, exploiting the concept of resource destroying maps. We discuss the two basic ingredients of these resource theories, the free operations and the free superoperations, which are sequential and parallel concatenations with free operations. This leads to defining properties of functionals that are well suited to quantify the resources of operations. We introduce these concepts at the example of coherence. In particular, we present two measures quantifying the ability of an operation to detect, i.e., to use, coherence, one of them with an operational interpretation, and provide methods to evaluate them.

SELECTION OF CITATIONS
SEARCH DETAIL
...