Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(5): 2063-2072, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29308903

ABSTRACT

We investigate the formation of spherical supraparticles with controlled and tunable porosity on the nanometer and micrometer scales using the self-organization of a binary mixture of small (nanometer scale) oxidic particles with large (micrometer scale) polystyrene particles in the confinement of an emulsion droplet. The external confinement determines the final, spherical structure of the hybrid assembly, while the small particles form the matrix material. The large particles act as templating porogens to create micropores after combustion at elevated temperatures. We control the pore sizes on the micrometer scale by varying the size of the coassembled polystyrene microspheres and produce supraparticles from both silica- and calcium-containing CaO/SiO2 particles. Although porous supraparticles are obtained in both cases, we found that the presence of calcium ions substantially complicated the fabrication process since the increased ionic strength of the dispersion compromises the colloidal stability during the assembly process. We minimized these stability issues via the addition of a steric stabilizing agent and by mixing bioactive and silica colloidal particles. We investigated the interaction of the porous particles with bone marrow stromal cells and found an increase in cell attachment with increasing pore size of the self-assembled supraparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...