Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(4): e1010708, 2023 04.
Article in English | MEDLINE | ID: mdl-37058535

ABSTRACT

During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Meiosis/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Prophase , Chromosome Pairing/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Cell Cycle Proteins/genetics
2.
Mol Cell ; 82(21): 4145-4159.e7, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36206765

ABSTRACT

Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.


Subject(s)
DNA, Circular , Multiprotein Complexes , Multiprotein Complexes/genetics , Multiprotein Complexes/chemistry , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Chromosomes/metabolism , Plasmids/genetics , DNA/genetics , Bacteria/genetics
3.
Immunity ; 52(6): 1057-1074.e7, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32362324

ABSTRACT

Tissue-resident and recruited macrophages contribute to both host defense and pathology. Multiple macrophage phenotypes are represented in diseased tissues, but we lack deep understanding of mechanisms controlling diversification. Here, we investigate origins and epigenetic trajectories of hepatic macrophages during diet-induced non-alcoholic steatohepatitis (NASH). The NASH diet induced significant changes in Kupffer cell enhancers and gene expression, resulting in partial loss of Kupffer cell identity, induction of Trem2 and Cd9 expression, and cell death. Kupffer cell loss was compensated by gain of adjacent monocyte-derived macrophages that exhibited convergent epigenomes, transcriptomes, and functions. NASH-induced changes in Kupffer cell enhancers were driven by AP-1 and EGR that reprogrammed LXR functions required for Kupffer cell identity and survival to instead drive a scar-associated macrophage phenotype. These findings reveal mechanisms by which disease-associated environmental signals instruct resident and recruited macrophages to acquire distinct gene expression programs and corresponding functions.


Subject(s)
Cellular Microenvironment/genetics , Cellular Reprogramming/genetics , Epigenesis, Genetic , Gene Expression Regulation , Myeloid Cells/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Biomarkers , Chromatin Immunoprecipitation Sequencing , Diet , Disease Models, Animal , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Kupffer Cells/immunology , Kupffer Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Non-alcoholic Fatty Liver Disease/pathology , Organ Specificity/genetics , Organ Specificity/immunology , Protein Binding , Signal Transduction , Single-Cell Analysis
4.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31932164

ABSTRACT

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/metabolism , Escherichia coli/virology , Allosteric Regulation , Bacteriophage lambda/genetics , Bacteriophage lambda/physiology , CRISPR-Cas Systems , DNA Cleavage , DNA Restriction Enzymes/chemistry , Escherichia coli/enzymology , Escherichia coli/immunology , Genome, Viral , Protein Multimerization , Second Messenger Systems
5.
Immunity ; 51(4): 655-670.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31587991

ABSTRACT

Tissue environment plays a powerful role in establishing and maintaining the distinct phenotypes of resident macrophages, but the underlying molecular mechanisms remain poorly understood. Here, we characterized transcriptomic and epigenetic changes in repopulating liver macrophages following acute Kupffer cell depletion as a means to infer signaling pathways and transcription factors that promote Kupffer cell differentiation. We obtained evidence that combinatorial interactions of the Notch ligand DLL4 and transforming growth factor-b (TGF-ß) family ligands produced by sinusoidal endothelial cells and endogenous LXR ligands were required for the induction and maintenance of Kupffer cell identity. DLL4 regulation of the Notch transcriptional effector RBPJ activated poised enhancers to rapidly induce LXRα and other Kupffer cell lineage-determining factors. These factors in turn reprogrammed the repopulating liver macrophage enhancer landscape to converge on that of the original resident Kupffer cells. Collectively, these findings provide a framework for understanding how macrophage progenitor cells acquire tissue-specific phenotypes.


Subject(s)
Kupffer Cells/physiology , Liver/metabolism , Macrophages/physiology , Myeloid Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Cellular Reprogramming , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver/cytology , Liver X Receptors/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Signal Transduction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...