Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358390

ABSTRACT

The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.


The human brain contains billions of neurons working together to process the vast array of information we receive from our environment. These neurons communicate at junctions known as synapses, where chemical packages called vesicles released from one neuron stimulate a response in another. This synaptic communication is crucial for our ability to think, learn and remember. However, this activity depends on a complex interplay of proteins, whose balance and location within the neuron are tightly controlled. Any disruption to this delicate equilibrium can cause significant problems, including neurodevelopmental and neuropsychiatric disorders, such as schizophrenia and intellectual disability. One key regulator of activity at the synapse is a protein called Bcl11b, which has been linked to conditions affected by synaptic dysfunction. It plays a critical role in maintaining specific junctions known as mossy fibre synapses, which are important for learning and memory. One of the genes regulated by Bcl11b is C1ql2, which encodes for a synaptic protein. However, it is unclear what molecular mechanisms Bcl11b uses to carry out this role. To address this, Koumoundourou et al. explored the role of C1ql2 in mossy fibre synapses of adult mice. Experiments to manipulate the production of C1ql2 independently of Bcl11b revealed that C1ql2 is vital for recruiting vesicles to the synapse and strengthening synaptic connections between neurons. Further investigation showed that C1ql2's role in this process relies on interacting with another synaptic protein called neurexin-3. Disrupting this interaction reduced the amount of C1ql2 at the synapse and, consequently, impaired vesicle recruitment. These findings will help our understanding of how neurodevelopmental and neuropsychiatric disorders develop. Bcl11b, C1ql2 and neurexin-3 have been independently associated with these conditions, and the now-revealed interactions between these proteins offer new insights into the molecular basis of synaptic faults. This research opens the door to further study of how these proteins interact and their roles in brain health and disease.


Subject(s)
Mossy Fibers, Hippocampal , Synapses , Animals , Mice , Transcription Factors , Synaptic Vesicles , Tumor Suppressor Proteins , Repressor Proteins
2.
Cell Rep ; 42(1): 112001, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36680772

ABSTRACT

The general understanding of hippocampal circuits is that the hippocampus and the entorhinal cortex (EC) are topographically connected through parallel identical circuits along the dorsoventral axis. Our anterograde tracing and in vitro electrophysiology data, however, show a markedly different dorsoventral organization of the hippocampal projection to the medial EC (MEC). While dorsal hippocampal projections are confined to the dorsal MEC, ventral hippocampal projections innervate both dorsal and ventral MEC. Further, whereas the dorsal hippocampus preferentially targets layer Vb (LVb) neurons, the ventral hippocampus mainly targets cells in layer Va (LVa). This connectivity scheme differs from hippocampal projections to the lateral EC, which are topographically organized along the dorsoventral axis. As LVa neurons project to telencephalic structures, our findings indicate that the ventral hippocampus regulates LVa-mediated entorhinal-neocortical output from both dorsal and ventral MEC. Overall, the marked dorsoventral differences in hippocampal-entorhinal connectivity impose important constraints on signal flow in hippocampal-neocortical circuits.


Subject(s)
Hippocampus , Rodentia , Animals , Hippocampus/physiology , Entorhinal Cortex/physiology , Neurons/physiology , Neural Pathways/physiology
3.
J Neurosci ; 40(44): 8413-8425, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32978288

ABSTRACT

The interplay between hippocampus and medial entorhinal cortex (mEC) is of key importance for forming spatial representations. Within the hippocampal-entorhinal loop, the hippocampus receives context-specific signals from layers II/III of the mEC and feeds memory-associated activity back into layer V (LV). The processing of this output signal within the mEC, however, is largely unknown. We characterized the activation of the receiving mEC network by evoked and naturally occurring output patterns in mouse hippocampal-entorhinal cortex slices. Both types of glutamatergic neurons (mEC LVa and LVb) as well as fast-spiking inhibitory interneurons receive direct excitatory input from the intermediate/ventral hippocampus. Connections between the two types of excitatory neurons are sparse, and local processing of hippocampal output signals within mEC LV is asymmetric, favoring excitation of far projecting LVa neurons over locally projecting LVb neurons. These findings suggest a new role for mEC LV as a bifurcation gate for feedforward (telencephalic) and feedback (entorhinal-hippocampal) signal propagation.SIGNIFICANCE STATEMENT Patterned network activity in hippocampal networks plays a key role in the formation and consolidation of spatial memories. It is, however, largely unclear how information is transferred to the neocortex for long-term engrams. Here, we elucidate the propagation of network activity from the hippocampus to the medial entorhinal cortex. We show that patterned output from the hippocampus reaches both major cell types of deep entorhinal layers. These cells are, however, only weakly connected, giving rise to two parallel streams of activity for local and remote signal propagation, respectively. The relative weight of both pathways is regulated by local inhibitory interneurons. Our data reveal important insights into the hippocampal-neocortical dialogue, which is of key importance for memory consolidation in the mammalian brain.


Subject(s)
Entorhinal Cortex/physiology , Hippocampus/physiology , Nerve Net/physiology , Action Potentials/physiology , Animals , Electric Stimulation , Electrophysiological Phenomena , Excitatory Postsynaptic Potentials/physiology , Feedback, Physiological , Glutamic Acid/physiology , In Vitro Techniques , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology
4.
Elife ; 92020 02 07.
Article in English | MEDLINE | ID: mdl-32031523

ABSTRACT

Across biological systems, cooperativity between proteins enables fast actions, supra-linear responses, and long-lasting molecular switches. In the nervous system, however, the function of cooperative interactions between voltage-dependent ionic channels remains largely unknown. Based on mathematical modeling, we here demonstrate that clusters of strongly cooperative ion channels can plausibly form bistable conductances. Consequently, clusters are permanently switched on by neuronal spiking, switched off by strong hyperpolarization, and remain in their state for seconds after stimulation. The resulting short-term memory of the membrane potential allows to generate persistent firing when clusters of cooperative channels are present together with non-cooperative spike-generating conductances. Dynamic clamp experiments in rodent cortical neurons confirm that channel cooperativity can robustly induce graded persistent activity - a single-cell based, multistable mnemonic firing mode experimentally observed in several brain regions. We therefore propose that ion channel cooperativity constitutes an efficient cell-intrinsic implementation for short-term memories at the voltage level.


Subject(s)
Ion Channels/physiology , Membrane Potentials/physiology , Memory, Short-Term/physiology , Models, Neurological , Animals , Hippocampus/cytology , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques
5.
Hippocampus ; 29(11): 1038-1048, 2019 11.
Article in English | MEDLINE | ID: mdl-31002217

ABSTRACT

Adaptive behavior requires the transient storage of information beyond the physical presence of external stimuli. This short-lasting form of memory involves sustained ("persistent") neuronal firing which may be generated by cell-autonomous biophysical properties of neurons or/and neural circuit dynamics. A number of studies from brain slices reports intrinsically generated persistent firing in cortical excitatory neurons following suprathreshold depolarization by intracellular current injection. In layer V (LV) neurons of the medial entorhinal cortex (mEC) persistent firing depends on the activation of cholinergic muscarinic receptors and is mediated by a calcium-activated nonselective cation current (ICAN ). The molecular identity of this conductance remains, however, unknown. Recently, it has been suggested that the underlying ion channels belong to the canonical transient receptor potential (TRPC) channel family and include heterotetramers of TRPC1/5, TRPC1/4, and/or TRPC1/4/5 channels. While this suggestion was based on pharmacological experiments and on effects of TRP-interacting peptides, an unambiguous proof based on TRPC channel-depleted animals is pending. Here, we used two different lines of TRPC channel knockout mice, either lacking TRPC1-, TRPC4-, and TRPC5-containing channels or lacking all seven members of the TRPC family. We report unchanged persistent activity in mEC LV neurons in these animals, ruling out that muscarinic-dependent persistent activity depends on TRPC channels.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/physiology , Neurons/physiology , TRPC Cation Channels/physiology , Animals , Entorhinal Cortex/cytology , Mice , Mice, Knockout , Organ Culture Techniques
6.
J Physiol ; 596(21): 5237-5249, 2018 11.
Article in English | MEDLINE | ID: mdl-30144079

ABSTRACT

KEY POINTS: Ectopic action potentials (EAPs) arise at distal locations in axonal fibres and are often associated with neuronal pathologies such as epilepsy or nerve injury, but they also occur during physiological network conditions. This study investigates whether initiation of such EAPs is modulated by subthreshold synaptic activity. Somatic subthreshold potentials invade the axonal compartment to considerable distances (>350 µm), whereas spread of axonal subthreshold potentials to the soma is inefficient. Ectopic spike generation is entrained by conventional synaptic signalling mechanisms. Excitatory synaptic potentials promote EAPs, whereas inhibitory synaptic potentials block EAPs. The modulation of ectopic excitability depends on propagation of somatic voltage deflections to the axonal EAP initiation site. Synaptic modulation of EAP initiation challenges the view of the distal axon being independent of synaptic activity and may contribute to mechanisms underlying fast network oscillations and pathological network activity. ABSTRACT: While most action potentials are generated at the axon initial segment, they can also be triggered at more distal sites along the axon. Such ectopic action potentials (EAPs) occur during several neuronal pathologies such as epilepsy, nerve injuries and inflammation but have also been observed during physiological network activity. EAPs propagate antidromically towards the somato-dendritic compartment where they modulate synaptic plasticity. Here we investigate the converse signal direction: do somato-dendritic synaptic potentials affect the generation of ectopic spikes? We measured anti- and orthodromic spikes in the soma and axon of mouse hippocampal CA1 pyramidal cells. We found that synaptic potentials propagate reliably through the axon, causing significant voltage transients at distances >350 µm. At these sites, excitatory input efficiently facilitated EAP initiation in distal axons and, conversely, inhibitory input suppressed EAP initiation. Our data reveal a new mechanism by which ectopically generated spikes can be entrained by conventional synaptic signalling during normal and pathological network activity.


Subject(s)
Action Potentials , CA1 Region, Hippocampal/physiology , Pyramidal Cells/physiology , Synaptic Potentials , Animals , CA1 Region, Hippocampal/cytology , Male , Mice , Mice, Inbred C57BL
7.
J Neurochem ; 146(4): 446-458, 2018 08.
Article in English | MEDLINE | ID: mdl-29863287

ABSTRACT

Axonal excitability is an important determinant for the accuracy, direction, and velocity of neuronal signaling. The mechanisms underlying spike generation in the axonal initial segment and transmitter release from presynaptic terminals have been intensely studied and revealed a role for several specific ionic conductances, including the persistent sodium current (INaP ). Recent evidence indicates that action potentials can also be generated at remote locations along the axonal fiber, giving rise to ectopic action potentials during physiological states (e.g., fast network oscillations) or in pathological situations (e.g., following demyelination). Here, we investigated how ectopic axonal excitability of mouse hippocampal CA1 pyramidal neurons is regulated by INaP . Recordings of field potentials and intracellular voltage in brain slices revealed that electrically evoked antidromic spikes were readily suppressed by two different blockers of INaP , riluzole and phenytoin. The effect was mediated by a reduction of the probability of ectopic spike generation while latency was unaffected. Interestingly, the contribution of INaP to excitability was much more pronounced in axonal branches heading toward the entorhinal cortex compared with the opposite fiber direction toward fimbria. Thus, excitability of distal CA1 pyramidal cell axons is affected by persistent sodium currents in a direction-selective manner. This mechanism may be of importance for ectopic spike generation in oscillating network states as well as in pathological situations.


Subject(s)
Axons/physiology , CA1 Region, Hippocampal/cytology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Sodium/metabolism , Animals , Axons/drug effects , Electric Stimulation , In Vitro Techniques , Lysine/analogs & derivatives , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
8.
Front Mol Neurosci ; 11: 103, 2018.
Article in English | MEDLINE | ID: mdl-29674952

ABSTRACT

Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF) synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs). Moreover, a dramatic decline of long-term potentiation (LTP) of the dentate gyrus-CA3 (DG-CA3) projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.

9.
Hippocampus ; 26(12): 1493-1508, 2016 12.
Article in English | MEDLINE | ID: mdl-27479916

ABSTRACT

The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Entorhinal Cortex/physiology , Neurons/physiology , Animals , Brain Waves/drug effects , Brain Waves/physiology , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Entorhinal Cortex/drug effects , Excitatory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice, Inbred C57BL , Microscopy, Fluorescence , Neurons/drug effects , Patch-Clamp Techniques , Tissue Culture Techniques
10.
Front Cell Neurosci ; 8: 255, 2014.
Article in English | MEDLINE | ID: mdl-25221474

ABSTRACT

Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K(+) channels (KATP channels) which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC) of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel) confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp) and whole-cell recordings from layer III (LIII) of the mEC in horizontal brain slices obtained at postnatal day (P) 6-13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.

11.
Neuron ; 83(6): 1418-30, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25199704

ABSTRACT

Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.


Subject(s)
Axons/physiology , Dendrites/physiology , Hippocampus/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Axons/ultrastructure , Computer Simulation , Dendrites/ultrastructure , Excitatory Postsynaptic Potentials/physiology , Female , Hippocampus/ultrastructure , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Models, Neurological , Organ Culture Techniques , Patch-Clamp Techniques , Pyramidal Cells/ultrastructure , Rats , Rats, Wistar
12.
J Neurochem ; 129(5): 792-805, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24673342

ABSTRACT

The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal networks.


Subject(s)
Choline/physiology , Hippocampus/physiology , Action Potentials/physiology , Animals , Autonomic Pathways/drug effects , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Data Interpretation, Statistical , Electroencephalography/drug effects , Electrophysiological Phenomena/drug effects , Evoked Potentials/drug effects , Hippocampus/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Nerve Net/drug effects , Nerve Net/physiology , Parasympathetic Nervous System/drug effects , Receptors, Muscarinic/drug effects , Receptors, Nicotinic/drug effects , Synaptic Transmission/drug effects
13.
Mech Dev ; 130(6-8): 412-23, 2013.
Article in English | MEDLINE | ID: mdl-23032193

ABSTRACT

Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully understand the rules governing transition from immature to mature patterns of network activity.


Subject(s)
Entorhinal Cortex/physiology , Hippocampus/physiology , Neocortex/physiology , Nerve Net/physiology , Neurons/physiology , Rodentia/physiology , Animals , Entorhinal Cortex/cytology , Entorhinal Cortex/growth & development , Hippocampus/cytology , Hippocampus/growth & development , Humans , Neocortex/cytology , Neocortex/growth & development , Nerve Net/cytology , Nerve Net/growth & development , Neurons/cytology , Organ Specificity , Rodentia/growth & development , Synapses/physiology , Synaptic Potentials/physiology , Synaptic Transmission/physiology
14.
J Neurosci ; 29(39): 12131-44, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19793971

ABSTRACT

Periodic spontaneous activity represents an important attribute of the developing nervous system. The entorhinal cortex (EC) is a crucial component of the medial temporal lobe memory system. Yet, little is known about spontaneous activity in the immature EC. Here, we investigated spontaneous field potential (fp) activity and intrinsic firing patterns of medial EC layer III principal neurons in brain slices obtained from rats at the first two postnatal weeks. A fraction of immature layer III neurons spontaneously generated prolonged (2-20 s) voltage-dependent intrinsic bursting activity. Prolonged bursts were dependent on the extracellular concentration of Ca(2+) ([Ca(2+)](o)). Thus, reduction of [Ca(2+)](o) increased the fraction of neurons with prolonged bursting by inducing intrinsic bursts in regularly firing neurons. In 1 mm [Ca(2+)](o), the percentages of neurons showing prolonged bursts were 53%, 81%, and 29% at postnatal day 5 (P5)-P7, P8-P10, and P11-P13, respectively. Prolonged intrinsic bursting activity was blocked by buffering intracellular Ca(2+) with BAPTA, and by Cd(2+), flufenamic acid (FFA), or TTX, and was suppressed by nifedipine and riluzole, suggesting that the Ca(2+)-sensitive nonspecific cationic current (I(CAN)) and the persistent Na(+) current (I(Nap)) underlie this effect. Indeed, a 0.2-1 s suprathreshold current step stimulus elicited a terminated plateau potential in these neurons. fp recordings at P5-P7 showed periodic spontaneous glutamate receptor-mediated events (sharp fp events or prolonged fp bursts) which were blocked by FFA. Slow-wave network oscillations become a dominant pattern at P11-P13. We conclude that prolonged intrinsic bursting activity is a characteristic feature of developing medial EC layer III neurons that might be involved in neuronal and network maturation.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/growth & development , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Age Factors , Animals , Animals, Newborn , Calcium/pharmacology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Entorhinal Cortex/drug effects , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar
15.
J Neurosci ; 29(32): 10131-43, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19675247

ABSTRACT

Understanding the modulation of the neural circuitry of fear is clearly one of the most important aims in neurobiology. Protein phosphorylation in response to external stimuli is considered a major mechanism underlying dynamic changes in neural circuitry. TrkB (Ntrk2) neurotrophin receptor tyrosine kinase potently modulates synaptic plasticity and activates signal transduction pathways mainly through two phosphorylation sites [Y515/Shc site; Y816/PLCgamma (phospholipase Cgamma) site]. To identify the molecular pathways required for fear learning and amygdalar synaptic plasticity downstream of TrkB, we used highly defined genetic mouse models carrying single point mutations at one of these two sites (Y515F or Y816F) to examine the physiological relevance of pathways activated through these sites for pavlovian fear conditioning (FC), as well as for synaptic plasticity as measured by field recordings obtained from neurons of different amygdala nuclei. We show that a Y816F point mutation impairs acquisition of FC, amygdalar synaptic plasticity, and CaMKII signaling at synapses. In contrast, a Y515F point mutation affects consolidation but not acquisition of FC to tone, and also alters AKT signaling. Thus, TrkB receptors modulate specific phases of fear learning and amygdalar synaptic plasticity through two main phosphorylation docking sites.


Subject(s)
Amygdala/physiology , Fear , Learning/physiology , Membrane Glycoproteins/metabolism , Neuronal Plasticity/physiology , Protein-Tyrosine Kinases/metabolism , Synapses/physiology , Animals , Binding Sites/genetics , Binding Sites/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Conditioning, Classical/physiology , Hippocampus/physiology , In Vitro Techniques , Long-Term Potentiation/physiology , Maze Learning/physiology , Membrane Glycoproteins/genetics , Memory/physiology , Mice , Mice, Mutant Strains , Phosphorylation/physiology , Point Mutation , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Synaptic Transmission/physiology
16.
Eur J Neurosci ; 24(11): 3183-94, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17156379

ABSTRACT

The cholinergic system is crucially involved in several cognitive processes including attention, learning and memory. Muscarinic actions have profound effects on the intrinsic firing pattern of neurons. In principal neurons of the entorhinal cortex (EC), muscarinic receptors activate an intrinsic cation current that causes multiple self-sustained spiking activity, which represents a potential mechanism for transiently sustaining information about novel items. The amygdala appears to be important for experience-dependent learning by emotional arousal, and cholinergic muscarinic influences are essential for the amygdala-mediated modulation of memory. Here we show that principal neurons from the lateral nucleus of the amygdala (LA) can generate intrinsic graded persistent activity that is similar to EC layer V cells. This firing behavior is linked to muscarinic activation of a calcium-sensitive non-specific cation current and can be mimicked by stimulation of cholinergic afferents that originate from the nucleus basalis of Meynert (n. M). Moreover, we demonstrate that the projections from the n. M. are essential and sufficient for the control and modulation of graded firing activity in LA neurons. We found that activation of these cholinergic afferents (i) is required to maintain and to increase firing rates in a graded manner, and (ii) is sufficient for the graded increases of stable discharge rates even without an associated up-regulation of Ca2+. The induction of persistent activity was blocked by flufenamic acid or 2-APB and remained intact after Ca2+-store depletion with thapsigargin. The internal ability of LA neurons to generate graded persistent activity could be essential for amygdala-mediated memory operations.


Subject(s)
Action Potentials/physiology , Afferent Pathways/metabolism , Amygdala/metabolism , Basal Nucleus of Meynert/metabolism , Cholinergic Fibers/metabolism , Receptors, Muscarinic/metabolism , Acetylcholine/metabolism , Action Potentials/drug effects , Afferent Pathways/drug effects , Amygdala/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Basal Nucleus of Meynert/drug effects , Boron Compounds/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cholinergic Fibers/drug effects , Enzyme Inhibitors/pharmacology , Flufenamic Acid/pharmacology , Memory/drug effects , Memory/physiology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Organ Culture Techniques , Receptors, Muscarinic/drug effects
17.
Neuron ; 49(5): 735-46, 2006 Mar 02.
Article in English | MEDLINE | ID: mdl-16504948

ABSTRACT

Working memory is an emergent property of neuronal networks, but its cellular basis remains elusive. Recent data show that principal neurons of the entorhinal cortex display persistent firing at graded firing rates that can be shifted up or down in response to brief excitatory or inhibitory stimuli. Here, we present a model of a potential mechanism for graded firing. Our multicompartmental model provides stable plateau firing generated by a nonspecific calcium-sensitive cationic (CAN) current. Sustained firing is insensitive to small variations in Ca2+ concentration in a neutral zone. However, both high and low Ca2+ levels alter firing rates. Specifically, increases in persistent firing rate are triggered only during high levels of calcium, while decreases in rate occur in the presence of low levels of calcium. The model is consistent with detailed experimental observations and provides a mechanism for maintenance of memory-related activity in individual neurons.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/cytology , Models, Neurological , Neurons/physiology , Action Potentials/drug effects , Animals , Calcium/metabolism , Calcium Channels/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Indoles/pharmacology , Neurons/drug effects , Nonlinear Dynamics , Potassium Channels/physiology , Rats , Thapsigargin/pharmacology , Time Factors
18.
Cell Tissue Res ; 322(2): 201-6, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16044320

ABSTRACT

The transient receptor potential (TRP) superfamily comprises a group of non-selective cation channels that have been implicated in both receptor and store-operated channel functions. The family of the classical TRPs (TRPCs) consists of seven members (TRPC1-7). The presence of TRPC1 and TRPC5 mRNA in the brain has previously been demonstrated by real-time polymerase chain reaction. However, the distribution of these receptors within different brain areas of mice has not been investigated in detail. We have used antibodies directed against TRPC1 and TRPC5 to study the distribution and localization of these channels in murine medial temporal lobe structures. Both TRPC1 and TRPC5 channels are present in the various nuclei of the amygdala, in the hippocampus, and in the subiculum and the entorhinal cortex. We have found that TRPC1 channels are primarily expressed on cell somata and on dendrites, whereas TRPC5 channels are exclusively located on cell bodies. Moreover, TRPC1 channels are selectively expressed by neurons, whereas TRPC5 channels are mainly expressed by neurons, but also by non-neuronal cells. The expression of TRPC1 and TRPC5 channels in mammalian temporal lobe structures suggests their involvement in neuronal plasticity, learning and memory.


Subject(s)
TRPC Cation Channels/metabolism , Temporal Lobe/metabolism , Animals , Mice , Mice, Inbred C57BL , Protein Isoforms/metabolism , Temporal Lobe/cytology
19.
Eur J Neurosci ; 18(12): 3343-51, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14686907

ABSTRACT

Cholinergic activation of entorhinal cortex (EC) layer V neurons plays a crucial role in the medial temporal lobe memory system and in the pathophysiology of temporal lobe epilepsy. Here, we demonstrate that muscarinic activation by focal application of carbachol depolarizes EC layer V neurons and induces epileptiform activity in rat brain slices. These seizure-like bursts are associated with a somatic [Ca2+]i increase of 293 +/- 82 nm and are blocked by the glutamate receptor antagonists CNQX and APV. Muscarinic activation did not directly evoke a [Ca2+]i increase, but subthreshold and suprathreshold depolarization did. Functional axon mapping revealed local axon branching as well as axon collaterals ascending to layers II and III. During blockade of ionotropic glutamatergic AMPA and NMDA receptors, carbachol depolarized layer V neurons by +7.5 +/- 3.4 mV. This direct muscarinic depolarization was associated with a conductance increase of 35 +/- 10.3% (+4.3 +/- 1.25 nS). Intracellular buffering of [Ca2+]i changes did not block this depolarization, but prolonged action potential duration and reduced adaptation of action potential firing. The muscarinic depolarization was neither blocked by combining intracellular Ca2+-buffering (EGTA or BAPTA) with non-specific Ca2+-channel inhibition by Ni+ (1 mm), nor by Ba2+ (1 mm) nor during inhibition of the h-current by 2 mm Cs+. In whole-cell patch-clamp recording, reversal of the muscarinic current occurred at about -45 mV and -5 mV with complete substitution of intrapipette K+ with Cs+. Thus, muscarinic depolarization of EC layer V neurons appears to be primarily mediated by Ca2+-independent activation of non-specific cation channels that conduct K+ about three times as well as Na+.


Subject(s)
Calcium/physiology , Entorhinal Cortex/physiopathology , Epilepsy/metabolism , Ion Channels/metabolism , Neurons/physiology , Receptors, Muscarinic/metabolism , Acetylcholine/physiology , Action Potentials/drug effects , Action Potentials/physiology , Afferent Pathways/drug effects , Afferent Pathways/physiology , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Carbachol/pharmacology , Cholinergic Fibers/drug effects , Cholinergic Fibers/physiology , Disease Models, Animal , Entorhinal Cortex/cytology , Entorhinal Cortex/drug effects , Epilepsy/chemically induced , Epilepsy/physiopathology , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Ion Channels/drug effects , Neurons/drug effects , Organ Culture Techniques , Potassium/physiology , Rats , Rats, Wistar , Receptors, Glutamate/drug effects , Receptors, Glutamate/metabolism , Receptors, Muscarinic/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
20.
Nature ; 420(6912): 173-8, 2002 Nov 14.
Article in English | MEDLINE | ID: mdl-12432392

ABSTRACT

Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex-which link the hippocampus to extensive cortical regions-respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.


Subject(s)
Action Potentials , Entorhinal Cortex/physiology , Memory, Short-Term/physiology , Neurons/physiology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Electric Conductivity , Entorhinal Cortex/cytology , Hippocampus/physiology , In Vitro Techniques , Male , Models, Neurological , Rats , Rats, Long-Evans , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...