Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 373: 110395, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36758887

ABSTRACT

Alizarin is a natural anthraquinone molecule with moderate antioxidative capacity. Some earlier investigations indicated that it can inhibit osteosarcoma and breast carcinoma cell proliferation by inhibiting of phosphorylation process of ERK protein (extracellular signal-regulated kinases). Several mechanisms of deactivation of one of the most reactive oxygen species, hydroperoxyl radical, by alizarin are estimated: hydrogen atom abstraction (HAA), radical adduct formation (RAF), and single electron transfer (SET). The plausibility of those mechanisms is estimated using density functional theory. The obtained results indicated HAA as the only thermodynamically plausible mechanism. For that purpose, two possible mechanistic pathways for hydrogen atom abstraction are studied in detail: hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET). Water and benzene are used as models of solvents with opposite polarity. To examine the difference between HAT and PCET is used kinetical approach based on the Transition state theory (TST) and determined rate constants (k). Important data used for a distinction between HAT and PCET mechanisms are obtained by applying the Quantum Theory of Atoms in Molecules (QTAIM), and by the analysis of single occupied molecular orbitals (SOMOs) in transition states for two examined mechanisms. The molecular docking analysis and molecular dynamic are used to predict the most probable positions of binding of alizarin to the sequence of ApoB-100 protein, a protein component of plasma low-density lipoproteins (LDL). It is found that alizarin links the nitrated polypeptide forming the π-π interactions with the amino acids Phenylalanine and Nitrotyrosine. The ability of alizarin to scavenge hydroperoxyl radical when it is in a sandwich structure between the polypeptide and radical species, as the operative reaction mechanism, is not significantly changed concerning its antioxidant capacity in the absence of polypeptide. Therefore, alizarin can protect the polypeptide from harmful hydroperoxyl radical attack, positioning itself between the polypeptide chain and the reactive oxygen species.


Subject(s)
Antioxidants , Hydrogen , Reactive Oxygen Species/chemistry , Molecular Docking Simulation , Antioxidants/chemistry , Hydrogen/chemistry , Protons , Anthraquinones , Thermodynamics
2.
J Magn Reson ; 314: 106737, 2020 05.
Article in English | MEDLINE | ID: mdl-32380383

ABSTRACT

An extended set of paramagnetic relaxation enhancement (PRE) data, up to the field of 32.9 Tesla, is reported for protons in an acidified aqueous solution of a Ni(II) salt in the presence and in the absence of added glycerol. For the 55% w/w glycerol sample, a distinct maximum in the PRE vs magnetic field curve is observed for the first time. The data are analysed using the Swedish slow-motion theory, including both the intramolecular (inner-sphere) and intermolecular (outer-sphere) contributions. The results indicate that estimating the outer-sphere part in the presence of the more efficient inner-sphere term is a difficult task.

3.
J Phys Chem B ; 123(43): 9187-9197, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31591890

ABSTRACT

As the development of the work (J. Phys. Chem. B 2019, 123 (10), 2362-2372), we have investigated the translational mobility in the same set of dried imidazolium-based ionic liquids (ILs) [bmim]A (A = BF4-, NO3-, TfO-, I-, Br-, and Cl-) in a wide temperature range using the NMR technique. It is shown that for the [bmim]+ cation, the temperature dependencies of product Dη do not follow the Stokes-Einstein relation for most systems studied, that is, the so-called "diffusion-viscosity decoupling" was realized. The correlation between local and translational mobility in pure IL of the [bmim][A] type was investigated using the data on NMR relaxation rates and diffusion coefficients. The most recent hypothesis of "water pockets" in mixtures of IL with water is critically discussed. Considering the totality of data in the literature and obtained here, we propose a specific model of the microstructure which may be applied up to water concentrations of 80-90 mol % (the structure of water-rich solutions is out of our current consideration). To confirm the model, molecular dynamics simulations of "IL-water" mixtures were also carried out.

4.
J Phys Chem B ; 115(49): 14572-81, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22004353

ABSTRACT

To study the effects of water on conformational dynamics of polyalcohols, Molecular Dynamics simulations of glycerol-water liquid mixtures have been carried out at different concentrations: 42.9 and 60.0 wt % of glycerol, respectively. On the basis of the analysis of backbone conformer distributions, it is found that the surrounding water molecules have a large impact on the populations of the glycerol conformers. While the local structure of water in the liquid mixture is surprisingly close to that in pure liquid water, the behavior of glycerols can be divided into three different categories where roughly 25% of them occur in a structure similar to that in pure liquid of glycerol, ca. 25% of them exist as monomers, solvated by water, and the remaining 50% of glycerols in the mixture form H-bonded strings as remains of the glycerol H-bond network. The typical glycerol H-bond network still exists even at the lower concentration of 40 wt % of glycerol. The microheterogeneity of water-glycerol mixtures is analyzed using time-averaged distributions of the sizes of the water aggregates. At 40 wt % of glycerol, the cluster sizes from 3 to 10 water molecules are observed. The increase of glycerol content causes a depletion of clusters leading to smaller 3-5 molecule clusters domination. Translational diffusion coefficients have been calculated to study the dynamical behavior of both glycerol and water molecules. Rotational-reorientational motion is studied both in overall and in selected substructures on the basis of time correlation functions. Characteristic time scales for different motional modes are deduced on the basis of the calculated correlation times. The general conclusion is that the presence of water increases the overall mobility of glycerol, while glycerol slows the mobility of water.

SELECTION OF CITATIONS
SEARCH DETAIL
...