Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiot Khimioter ; 53(7-8): 8-14, 2008.
Article in Russian | MEDLINE | ID: mdl-19227117

ABSTRACT

Human cytomegalovirus (CMV) infection (CMVI) results in lethal risks at the immunodeficiency status, including the HIV co-infection. Carboxy-mimickers of the polymeric backbone of nucleic acids, potential agonists and antagonists of the virus genome were developed as promising candidates for the antiviral protective agents. In parallel with stimulation of antiviral immunity the mimickers derived membrane potent compounds (MPC), were shown to be able to prevent directly and efficiently the cell infection by various strains of the human immunodeficiency virus (HIV) [Antibiotics and Chemother 2003; 48: 2:29-41; 5:7-15]. The paper presents new data and discussion of the results on investigation of the MPC, modified by the previously designed adamantane or norbornene and by the recently applied sulfoacidic pharmacophores in the experimental model of CMVI in vitro (human diploid fibroblast cells). Eight substances with various ratios of theabove mentioned cage-hydrocarbon and/or anion pharmacophores in the macromolecule were tested and active MPC modifications were detected which efficiently inhibited the CMVI with high indexes of selectivity up to 250, 4286 and 7500 in prophylactic, therapeutic and viricidal experimental schemes respectively. Modulating influence of the lipotropic (cage-hydrocarbon) pharmacophores on the anti-CMV activity was observed only in the viricidal and prophylactic experimental schemes, in which the lipid membranes of the cells and/or virus envelopes were involved. Still, the dominant role in the antiviral activity of MPC in all the experimental schemes was played by the sulfoacid-anionic chemical structure modulation. By increasing the density of the negative charge of the macromolecules to the levels comparable with the charge of the genome molecules, theanionic modification evidently amplified the potential of the antagonistic competition of the synthetic MPC with the virus genome, thus impairing the virus-specific interactions. The most promising compounds AS-688 and AS-678/-679 were selected for further investigation of the mechanisms of the anti-CMV and anti-HIV activity.


Subject(s)
Adamantane/analogs & derivatives , Adamantane/chemistry , Antiviral Agents/chemistry , Cytomegalovirus/drug effects , Norbornanes/chemistry , Sulfuric Acid Esters/chemistry , Adamantane/pharmacology , Antiviral Agents/pharmacology , Cells, Cultured , Cytomegalovirus/physiology , Fibroblasts/drug effects , Fibroblasts/virology , Humans , Hydrocarbons/chemistry , Norbornanes/pharmacology , Sulfuric Acid Esters/pharmacology , Virus Replication/drug effects
2.
Mol Gen Mikrobiol Virusol ; (2): 33-6, 2005.
Article in Russian | MEDLINE | ID: mdl-15954475

ABSTRACT

The anti-HIV activity of new membranotropic compounds, i.e. of the polycarboxylate matrix and of its derivatives modified by adamantane and norbonene, was studied in respect of HIV-1 strains, whose tropicity to coreceptors CCR5 and CXCR4 was different, as well as in respect of HIV-1 variants resistant to azidothymidine (AZT) in a continuous culture of human lymphoid cells (MT-4) and in mononuclear cells of peripheral blood from healthy donors. Testing of complex compounds in a culture of infected MT-4 human lymphoid cells showed an effective inhibition of viral reproduction of LAV.04 (CXCR4-tropic variant) and of HIV11(EVK) as well as AZT-resistant variants. The studied pharmacophores-modified compounds displayed, in infection of the primary culture of human mononuclear cells of the HIV-1 R5 and X4 strains, a notable antiviral activity with their HIV efficiency significantly exceeding the one of the original matrix.


Subject(s)
Adamantane/chemistry , Anhydrides/chemistry , Anti-HIV Agents/pharmacology , HIV-1/drug effects , Norbornanes/chemistry , Anti-HIV Agents/chemistry , Cell Line , Drug Resistance, Viral , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...