Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 93(5): 1365-1384, 2019 05.
Article in English | MEDLINE | ID: mdl-30729277

ABSTRACT

Exposure to the chemical warfare nerve agent VX is extremely toxic, causing severe cholinergic symptoms. If not appropriately treated, death ultimately ensues. Based on our previously described whole-body vapor exposure system, we characterized in detail the clinical outcome, including respiratory dynamics, typical of whole-body exposure to lethal doses of VX vapor in freely moving rats. We further evaluated the efficacy of two different antidotal regimens, one comprising a single and the other repeated administration of antidotes, in countering the toxic effects of the exposure. We show that a 15 min exposure to air VX concentrations of 2.34-2.42 mg/m3 induced a late (15-30 min) onset of obvious cholinergic signs, which exacerbated over time, albeit without convulsions. Marked eye pathology was observed, characterized by pupil constriction to pinpoint, excessive lacrimation with red tears (chromodacryorrhea) and corneal damage. Respiratory distress was also evident, characterized by a three-fourfold increase in Penh values, an estimate of lung resistance, and by lung and diaphragm histological damage. A single administration of TAB (the oxime TMB-4, atropine and the anticholinergic and antiglutamatergic benactyzine) at the onset of clinical signs afforded only limited protection (66% survival), with clinical deterioration including weight loss, chromodacryorrhea, corneal damage, increased airway resistance and late death. In contrast, a combined therapy of TAB at the onset of clinical signs and repeated administration of atropine and toxogonin (ATOX) every 3-5 h, a maximum of five i.m. injections, led to 100% survival and a prompt recovery, accompanied by neither the above-described signs of eye pathology, nor by bronchoconstriction and respiratory distress. The necessity of recurrent treatments for successful elimination of VX vapor toxicity strongly supports continuous penetration of VX following termination of VX vapor exposure, most likely from a VX reservoir formed in the skin due to the exposure. This, combined with the above-described eye and respiratory pathology and absence of convulsions, are unique features of whole-body VX vapor exposure as compared to whole-body vapor exposure to other nerve agents, and should accordingly be considered when devising optimal countermeasures and medical protocols for treatment of VX vapor exposure.


Subject(s)
Antidotes/administration & dosage , Atropine/administration & dosage , Benactyzine/administration & dosage , Chemical Warfare Agents/toxicity , Organothiophosphorus Compounds/toxicity , Trimedoxime/administration & dosage , Animals , Antidotes/pharmacology , Atropine/pharmacology , Benactyzine/pharmacology , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/toxicity , Drug Administration Schedule , Drug Combinations , Environmental Exposure/adverse effects , Eye Diseases/chemically induced , Eye Diseases/prevention & control , Male , Obidoxime Chloride/administration & dosage , Organothiophosphorus Compounds/administration & dosage , Rats , Rats, Sprague-Dawley , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/prevention & control , Trimedoxime/pharmacology
2.
Arch Toxicol ; 92(2): 873-892, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29127449

ABSTRACT

VX, a potent inhibitor of cholinesterase (ChE), is considered as one of the most toxic, persistent and least volatile nerve agents. VX is absorbed in various environmental surfaces and is gradually released long after its initial dispersal. Its toxicity is mainly caused by disrupting central and peripheral cholinergic nervous system activity, leading to potential long-term detrimental effects on health. The primary objective of the present study was to assess the threshold VX dose leading to minimal physiological alterations following prolonged VX exposure. Characterization of such a threshold is crucial for dealing with unresolved operative dilemmas such as when it is safe enough to resettle a population that has been evacuated from a VX-contaminated area. Rats, continuously exposed to various doses of VX (0.225-45 µg/kg/day) for 4 weeks via implanted mini-osmotic pumps, showed a dose-dependent and continuous decrease in ChE activity in whole blood, brain and muscles, ranging between 20 and 100%. Exposure to 13.5 µg/kg/day led to a stable low ChE activity level (~ 20%), accompanied by transient and negligible electrocorticogram spectral power transformations, especially in the theta and alpha brain wave frequencies, and a significant decrease in total brain M2 receptor density. These changes were neither accompanied by observable signs of intoxication nor by changes in motor function, circadian rhythm or TSPO level (a reliable marker of brain damage). Following exposure to lower doses of 2.25 and 0.225 µg/kg/day, the only change measured was a reduction in ChE activity of 60 and 20%, respectively. Based on these results, we delineate ChE inhibition as the physiological measure most susceptible to alterations following prolonged VX exposure, and determine for the first time the threshold sub-acute VX dose for minimal physiological effects (up to 20% reduction in ChE activity) in the rat as 0.225 µg/kg/day.


Subject(s)
Cholinesterase Inhibitors/toxicity , Nerve Agents/toxicity , Organothiophosphorus Compounds/toxicity , Animals , Biomarkers/blood , Body Temperature , Body Weight , Brain/drug effects , Carrier Proteins/metabolism , Chemical Warfare Agents/toxicity , Cholinesterases/blood , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Male , Motor Activity , Muscles/drug effects , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M2/metabolism , Receptors, GABA-A/metabolism , Toxicity Tests, Chronic
3.
Toxicol Sci ; 146(2): 301-10, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25956921

ABSTRACT

Eye exposure to the extremely toxic organophosphorus sarin results in long-term miosis and visual impairment. As current treatment using atropine or homatropine eye drops may lead to considerable visual side effects, alternative combined treatments of intramuscular (im) oximes (16.8 µmol/kg, im) with atropine (0.5 mg/kg, im) or with the short acting antimuscarinic tropicamide (0.5%; w/v) eye drops were thus evaluated. The combined treatments efficacy following topical exposure to sarin (1 µg) was assessed by measuring pupil width and light reflex using an infra-red based digital photographic system. Results showed that the combined treatment of various oximes with atropine or with topical tropicamide eye drops rapidly reversed the sarin-induced miosis and presented a long-term improvement of 67-98% (oxime+tropicamide) or 84-109% (oxime+atropine) in pupil widening as early as 10-min following treatment. This recovery was shown to persist for at least 8-h following exposure. All combined treatments facilitated the ability of the iris to contract following sarin insult as tested by a light reflex response.Our findings emphasize the high efficacy of im oxime treatment combined with either atropine im or tropicamide eye drops in counteracting sarin-induced ocular insult. Therefore, in a mass casualty scenario the systemic combined treatment may be sufficient to ameliorate sarin-induced ocular insult with no need for additional, topical anticholinergic treatment at least in the initial stage of intoxication. For very mild casualties, who are unlikely to receive im treatment, the combined oxime (im) with topical tropicamide treatment may be sufficient in ameliorating the ocular insult.


Subject(s)
Atropine/pharmacology , Cholinesterase Reactivators/pharmacology , Eye/drug effects , Oximes/pharmacology , Sarin/toxicity , Administration, Ophthalmic , Animals , Atropine/therapeutic use , Drug Synergism , Male , Miosis/drug therapy , Rats , Rats, Long-Evans , Tropicamide/administration & dosage , Tropicamide/pharmacology
4.
Br J Pharmacol ; 171(9): 2364-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24428128

ABSTRACT

BACKGROUND AND PURPOSE: Eye exposure to the organophosphorus (OP) irreversible cholinesterase inhibitor sarin results in long-term miosis and impaired visual function. We have previously shown that tropicamide is better at ameliorating this insult than topical atropine or cyclopentolate. However, to minimize side effects associated with repeated tropicamide applications and high treatment doses, we evaluated the effects of oximes (ChE re-activators) alone and combined with tropicamide at ameliorating OP-induced ocular impairments. EXPERIMENTAL APPROACH: Rats were topically exposed to sarin, followed by topical treatment with various oximes alone or in combination with tropicamide. Pupil width and light reflex were measured by an infrared-based digital photograph system, while visual performance was assessed by employing the cueing version of the Morris water maze (MWM). KEY RESULTS: Oxime treatment following sarin ocular exposure induced a slow persistent pupil widening with efficacy in the order of HLö-7 > HI-6 > obidoxime = TMB-4 = MMB-4. In the light reflex test, the ability of the iris to contract following oxime treatment was mostly impaired at 1 h and was back to normal at 4 h following sarin exposure. All oxime treatments ameliorated the sarin-induced visual impairment as tested in the visual task (MWM). The combined topical treatment of tropicamide with an oxime induced a rapid improvement in pupil widening, light reflex and visual performance, and enabled a reduction in tropicamide dose. CONCLUSIONS AND IMPLICATIONS: The use of tropicamide combined with an oxime should be considered as the topical treatment of choice against the toxic effects of ocular OP exposure.


Subject(s)
Cholinergic Antagonists/administration & dosage , Miosis/drug therapy , Oximes/administration & dosage , Sarin/toxicity , Tropicamide/administration & dosage , Vision Disorders/drug therapy , Administration, Topical , Animals , Drug Therapy, Combination , Male , Miosis/chemically induced , Rats , Rats, Long-Evans , Treatment Outcome , Vision Disorders/chemically induced
5.
Toxicol Appl Pharmacol ; 253(1): 31-7, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21419149

ABSTRACT

The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2±1.7 µg/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E2 (PGE2) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.


Subject(s)
Brain/drug effects , Heart/drug effects , Inhalation Exposure/adverse effects , Sarin/administration & dosage , Sarin/toxicity , Animals , Brain/physiopathology , Heart/physiopathology , Lethal Dose 50 , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Sprague-Dawley , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...