Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 210: 111890, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33440270

ABSTRACT

The management of initial planting density can be a strategy to increase barium phytoextraction from soil, reducing the time required for soil decontamination. To delimit the ideal planting density for barium (Ba) phytoremediation using Typha domingensis, we conducted a 300-day experiment in an area accidentally contaminated with barite. Four initial planting densities were tested: 4, 8, 12, and 16 plantsm-2 (D4, D8, D12, and D16 treatments, respectively). Plant development was evaluated periodically, and the phytoextraction efficiency was determined at the end of the trial. The initial planting density affected Ba phytoremediation by T. domingensis monoculture. Phytoextraction potential was better represented by the mass-based translocation factor (mTF) than the concentration-based translocation factor. D16 promoted the highest final number of plants and biomass production, but the mass of Ba in the aerial part did not differ among D8, D12, and D16. D4 resulted in more Ba accumulated belowground than aboveground (6.3 times higher), whereas D12 and D16 achieved the greatest mTFs. Higher absorption of Ba from soil can be achieved using less T. domingensis individuals at the beginning of the treatment (D4 and D8) but with high accumulation in belowground tissues. We conclude that the D8 density is considered the most appropriate if considering the phytoextraction potential and field management facilitated using fewer plants.


Subject(s)
Barium/metabolism , Soil Pollutants/metabolism , Typhaceae/metabolism , Biodegradation, Environmental , Biomass , Floods
2.
Chemosphere ; 262: 127869, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32771709

ABSTRACT

Barite (BaSO4) is a component of drilling fluids used in the oil and gas industry and may cause barium (Ba) contamination if it is spilled onto flooded soils. Under anoxic soil conditions and low redox potential, sulfate can be reduced to a more soluble form (sulfide), and Ba can be made available. To design a solution for such environmental issues, a field study was conducted in a Ba-contaminated flooded area in Brazil, in which we induced Ba phytoextraction from the management of the planting density of two intercropped macrophytes. Typha domingensis and Eleocharis acutangula were grown in four initial planting densities: "Ld" (low density: 4 and 32 plants m-2); "Md" (medium density: 8 and 64 plants m-2); "Hd" (high density: 12 and 128 plants m-2); "Vhd" (very high density: 16 and 256 plants m-2). Vhd produced the largest number of plants after 300 days. However, the treatments did not differ in terms of the amount of biomass. The increments in the initial planting density did not increase the Ba concentration in the aerial part. The greatest Ba phytoextraction (aerial part + root) was achieved by Ld treatment, which removed approximately 3 kg of Ba ha-1. Md and Vhd treatments had the highest Ba translocation factors. Because more plants per area did not result in greater Ba phytoextraction, a lower planting density was recommended for the intercropping of T. domingensis and E. acutangula to promote the phytoextraction of barium, due to possible lower implementation costs in contaminated flooded environments.


Subject(s)
Biodegradation, Environmental , Soil Pollutants/metabolism , Typhaceae/physiology , Barium , Barium Sulfate , Biomass , Brazil , Eleocharis , Floods , Soil , Soil Pollutants/analysis
3.
Chemosphere ; 255: 127033, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417520

ABSTRACT

Symbiosis among herbicide-metabolising microorganisms and phytoremediation plants may be an efficient alternative to remediate sulfentrazone-contaminated soils. This work evaluated the bioremediation of sulfentrazone-contaminated soils by symbiosis between bacteria (Bradyrhizobium sp.) and jack bean (Canavalia ensiformis L.). The experiment was carried out in a greenhouse between March and May of 2018, in the Universidade Federal do Espírito Santo (UFES). Four doses of sulfentrazone (0, 400, 800, and 1200 g ha-1 a. i.) were tested with and without inoculation with Bradyrhizobium sp. BR 2003 (SEMIA 6156) After 80 days of cultivation, plants were cut and soil was collected for determination of the herbicide residual levels and millet bioassay. The sulfentrazone concentration was significantly reduced by plant inoculation with Bradyrhizobium sp.: on average, concentrations were 18.97%, 23.82%, and 22.10% lower than in the absence of inoculation at doses of 400, 800, and 1200 g ha-1, respectively. Symbiosis promoted a reduction of up to 65% in residual soil herbicides. Under the 1200 g ha-1 dose, inoculation promoted greater plant height than in the uninoculated plant. Regardless of the dose of sulfentrazone, the dry root mass was higher in the inoculated plants. The microbiological indicators showed satisfactory results mainly for the dose of 400 g ha-1. The results of this study highlight the potential of positive interactions between symbiotic microorganisms and leguminous species, aiming toward the phytoremediation of sulfentrazone herbicide.


Subject(s)
Bradyrhizobium/growth & development , Canavalia/growth & development , Herbicides/analysis , Soil Microbiology , Soil Pollutants/analysis , Sulfonamides/analysis , Triazoles/analysis , Biodegradation, Environmental , Herbicides/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Sulfonamides/metabolism , Symbiosis , Triazoles/metabolism
4.
Int J Phytoremediation ; 21(7): 652-662, 2019.
Article in English | MEDLINE | ID: mdl-30656954

ABSTRACT

This study evaluated remediation of the herbicide sulfentrazone in soils with three different mineralogies (kaolinite, hematite, and gibbsite) and three remediation sulfentrazone treatments (Canavalia ensiformis L., Crotalaria juncea L., and natural attenuation). This study was conducted in a factorial scheme, in triplicate with randomized block design. Sulfentrazone was applied at 0 and 400 g ha-1. We analyzed sulfentrazone residue in the soils by high-performance liquid chromatography and confirmed the results with bioassays of Pennisetum glaucum. Herbicide movement was greater in the kaolinitic soil without plant species. The retention of herbicide in the kaolinitic soil occurred in larger quantities in the 0-12 cm layer, with higher levels found in the treatments with plants. In the hematitic soil with C. juncea, all applied herbicides were concentrated in the 0-12 cm layer. In the other hematitic soil treatments, sulfentrazone was not detected by chemical analysis at any soil depth, although in many treatments, it was detected in the bioassay. Phytoremediation was more efficient with C. ensiformis grown in gibbsitic soil, reducing the sulfentrazone load by approximately 27%. Natural attenuation was more efficient than phytoremediation in oxidic soils due to soil pH and texture soils favored microbial degradation of the compound. Highlights The influence of soil mineralogy of herbicide sulfentrazone retention was evaluated. Canavalia ensiformis and Crotalaria juncea were evaluated as phytoremediation plants. Kaolinite soils presented great movement of sulfentrazone in the soil. Natural attenuation is more efficient in oxide soils than phytoremediation.


Subject(s)
Soil Pollutants , Soil/chemistry , Biodegradation, Environmental , Sulfonamides , Triazoles
5.
J Hazard Mater ; 362: 124-131, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30236932

ABSTRACT

In anoxic environmental conditions and with a drastic reduction of the redox potential, the barium sulphate used in petroleum drilling fluids becomes a hazard to the ecosystem. A field study was conducted in Brazil in an area with a history of accidental Barium (Ba) contamination to evaluate the role of frequent plant cutting on phytoremediation. The plant species Typha domingensis and Eleocharis acutangula, cultivated in a combined plantation, were subjected to four different cut frequencies: every 90 days (four cuts), 120 days (three cuts), 180 days (two cuts), or 360 days (one cut). The total amount of Ba extracted from the soil by the plants was evaluated for each treatment and at different soil depths Overall, total Ba in the soil decreased the most dramatically for cut frequencies of 120 (37.83%) and 180 (47.73%) days at 0-0.2 m below the surface, and with cut frequencies of 120 (51.98%) and 360 (31.79%) at 0.2-0.4 m depth. Further, total Ba in the plant biomass was greatest in the 120 and 360-days frequency groups. Thus, cuts at intervals of 120 days or more are associated with high levels of Ba in the plant tissue and a decrease of soil Ba.


Subject(s)
Barium/isolation & purification , Biodegradation, Environmental , Biomass , Soil Pollutants/analysis , Adsorption , Agriculture , Brazil/epidemiology , Ecosystem , Eleocharis/growth & development , Floods , Hydrogen-Ion Concentration , Soil , Time Factors , Typhaceae/growth & development
6.
Chemosphere ; 219: 836-844, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30572235

ABSTRACT

Macrophytes are widely used in water treatment and have potential for remediation of flooded soils. Many techniques have been proposed to increase the phytoextraction of metals by macrophytes, however, the knowledge of periods of maximum absorption and translocation is essential and is a gap in the management of phytoremediation. To evaluate the absorption and translocation of Ba over time by Eleocharis acutangula, a greenhouse experiment was conducted and the dry matter production of plants, Ba content in the roots and aerial parts, mass of Ba accumulated in plants, translocation factors and removal coefficients of Ba, and Ba content in two layers of the soil (0.0-0.1 m and 0.1-0.2 m) were determined. The highest translocation rates were observed after 105 days of cultivation, when the plants reached a state of hyperaccumulation. The maximum accumulation of barium occurred in the aerial parts of the plants at 105 days and in the roots at both 120 and 180 days. The barium content was reduced up to 120 days, as a result of an increase in available barium content in the soil layer of 0.0-0.1 m up to 105 days and in the layer 0.10-0.20 m up to 120 days, favoring the intense accumulation of Ba during this period. After 120 days of cultivation, the accumulation in the roots maintained a high coefficient of removal of Ba from the soil to the plant. After 180 days the available barium in the soil was depleted due to this high rate of removal by the roots.


Subject(s)
Barium/pharmacokinetics , Biodegradation, Environmental , Eleocharis/metabolism , Floods , Barium/analysis , Plant Roots/metabolism , Soil/chemistry , Soil Pollutants/analysis , Time Factors
7.
Chemosphere ; 214: 10-16, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30248554

ABSTRACT

Aquatic macrophytes are potentially useful for phytoremediation on flooded areas. A field study in Brazil was conducted to evaluate Eleocharis acutangula (E), Cyperus papyrus (C) and Typha domingensis (T) in monocropping and intercropping, aiming to phytoremediate barium-polluted flooded soils. The treatments were: monocroppings (E, C and T); double intercroppings (EC, ET and CT); and triple intercropping (ECT). The 180-d field trial was performed in a flooded area with high barium content, with a randomized complete block design and three replicates. Plant stand size, biomass yield, and Ba concentration aboveground/Ba concentration in roots (translocation factor - TF) as well as Ba mass aboveground/Ba mass in roots (mass translocation factor - mTF) were determined. Most of the treatments did not differ on dry biomass, except for EC, which showed the lowest yield. Consistently with its biology, E. acutangula in monocropping showed the largest plant stand. Otherwise, intercroppings with T. domingensis achieved the highest amounts of barium absorbed from the soil and transferred most of the barium content from belowground to aboveground (mTF > 1.0), especially ET, which showed the highest mTF among the intercroppings (2.03). Remarkably, TF values did not reflect such phytoextraction ability for CT and ECT. Thus, mTF was more appropriate than TF to assess phytoextraction capacity. Furthermore, it was demonstrated that intercropping can increase barium uptake from flooded soils. Particularly, the intercropping ET constituted the most cost-effective treatment, with the cyperaceous species providing high plant coverage while T. domingensis facilitated barium removal by translocating it to the aboveground biomass.


Subject(s)
Barium Sulfate/chemistry , Barium/adverse effects , Soil Pollutants/chemistry , Soil/chemistry , Biodegradation, Environmental , Floods , Soil Pollutants/analysis
8.
Chemosphere ; 206: 522-530, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29778077

ABSTRACT

The use of barite (BaSO4) in drilling fluids for oil and gas activities makes barium a potential contaminant in case of spills onto flooded soils, where low redox conditions may increase barium sulfate solubility. In order to select plants able to remove barium in such scenarios, the following species were evaluated on barium phytoextraction capacity: Brachiaria arrecta, Cyperus papyrus, Eleocharis acutangula, E. interstincta, Nephrolepsis cf. rivularis, Oryza sativa IRGA 424, O. sativa BRS Tropical, Paspalum conspersum, and Typha domingensis. Plants were grown in pots and exposed to six barium concentrations: 0, 2.5, 5.0, 10.0, 30.0, and 65.0 mg kg-1. To simulate flooding conditions, each pot was kept with a thin water film over the soil surface (∼1.0 cm). Plants were evaluated for biomass yield and barium removal. The highest amount of barium was observed in T. domingensis biomass, followed by C. papyrus. However, the latter exported most of the barium to the aerial part of the plant, especially at higher BaCl2 doses, while the former accumulated barium preferentially in the roots. Thus, barium removal with C. papyrus could be achieved by simply harvesting aerial biomass. The high amounts of barium in T. domingensis and C. papyrus resulted from the combination of high barium concentration in plant tissues with high biomass production. These results make T. domingensis and C. papyrus potential candidates for phytoremediation schemes to remove barium from flooded soils.


Subject(s)
Barium/chemistry , Biodegradation, Environmental , Soil Pollutants/chemistry , Soil/chemistry , Soil Pollutants/analysis
9.
Chemosphere ; 134: 181-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25950134

ABSTRACT

The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 µg g(-1) with a maximum of 0.215 ± 0.009 µg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 µg g(-1), with a mean value of 44 ± 146 µg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea.


Subject(s)
Mercury/analysis , Oxygen/chemistry , Soil Pollutants/analysis , Adsorption , Air Pollutants/analysis , Brazil , Environmental Monitoring/methods , Gases/analysis , Geography , Hydrogen-Ion Concentration , Organic Chemicals/analysis , Soil/chemistry , Spectrophotometry, Atomic , Temperature , Tropical Climate
10.
Int J Phytoremediation ; 17(1-6): 313-21, 2015.
Article in English | MEDLINE | ID: mdl-25409243

ABSTRACT

This study aimed to evaluate the herbicidal activity of picloram on the biomass of the remediation plants Eleusine coracana and Panicum maximum after cultivation in a soil contaminated with this herbicide. These species were grown in three soils, differentiated based on texture (clayish, middle, and sandy, with 460, 250, and 40 g kg(-1) of the clay, respectively), previously contaminated with picloram (0, 80, and 160 g ha(-1)). After 90 days, the plants were harvested and an extract was produced by maceration of leaves and stems of these plants. It was applied to pots containing washed sand, comprising a bioassay in a growth chamber using soybean as a bioindicator for picloram. Soil and plant samples were analyzed by HPLC. The results showed the presence of picloram or metabolites with herbicidal activity in the shoots of E. coracana and P. maximum at phytotoxic levels with regard to soybean plants, indicating that they work only as phytoextractors and that the presence of straw on the soil surface can promote recontamination within the area. It is not recommended to cultivate species susceptible to picloram in areas where it was reported remediation by E. indica and P. maximum and still present residues of these species.


Subject(s)
Eleusine/metabolism , Environmental Restoration and Remediation/methods , Herbicides/metabolism , Panicum/metabolism , Picloram/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Eleusine/chemistry , Environmental Restoration and Remediation/instrumentation , Herbicides/analysis , Panicum/chemistry , Picloram/analysis , Plant Stems/chemistry , Plant Stems/metabolism , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...