Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35742625

ABSTRACT

Recent literature indicates that apathy is associated with poor cognitive and functional outcomes in older adults, including motoric cognitive risk syndrome (MCR), a predementia syndrome. However, the underlying biological pathway is unknown. The objectives of this study were to (1) examine the cross-sectional associations between inflammatory cytokines (Interleukin 6 (IL-6) and C-Reactive Protein (CRP)) and apathy and (2) explore the direct and indirect relationships of apathy and motoric cognitive outcomes as it relates to important cognitive risk factors. N = 347 older adults (≥65 years old) enrolled in the Central Control of Mobility in Aging Study (CCMA). Linear and logic regression models showed that IL-6, but not CRP was significantly associated with apathy adjusted for age, gender, and years of education (ß = 0.037, 95% CI: 0.002-0.072, p = 0.04). Apathy was associated with a slower gait velocity (ß = -14.45, 95% CI: -24.89-4.01, p = 0.01). Mediation analyses demonstrated that IL-6 modestly mediates the relationship between apathy and gait velocity, while apathy mediated the relationships between dysphoria and multimorbidity and gait velocity. Overall, our findings indicate that apathy may be an early predictor of motoric cognitive decline. Inflammation plays a modest role, but the underlying biology of apathy warrants further investigation.


Subject(s)
Apathy , Cognition Disorders , Cognitive Dysfunction , Aged , Cognition , Cross-Sectional Studies , Humans , Interleukin-6 , Mediation Analysis , Risk Factors
2.
Sci Rep ; 6: 30736, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27498769

ABSTRACT

Tissue clearing methods promise to provide exquisite three-dimensional imaging information; however, there is a need for simplified methods for lower resource settings and for non-fluorescence based phenotyping to enable light microscopic imaging modalities. Here we describe the simplified CLARITY method (SCM) for tissue clearing that preserves epitopes of interest. We imaged the resulting tissues using light sheet microscopy to generate rapid 3D reconstructions of entire tissues and organs. In addition, to enable clearing and 3D tissue imaging with light microscopy methods, we developed a colorimetric, non-fluorescent method for specifically labeling cleared tissues based on horseradish peroxidase conversion of diaminobenzidine to a colored insoluble product. The methods we describe here are portable and can be accomplished at low cost, and can allow light microscopic imaging of cleared tissues, thus enabling tissue clearing and imaging in a wide variety of settings.


Subject(s)
Histocytological Preparation Techniques/methods , Imaging, Three-Dimensional/methods , Animals , Colorimetry , Humans , Microscopy, Confocal/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...