Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Hypertens Res ; 47(5): 1338-1349, 2024 May.
Article in English | MEDLINE | ID: mdl-38383894

ABSTRACT

Mitochondrial dysfunction has been implicated in various types of cardiovascular disease including hypertension. Mitochondrial fission fusion balance is critical to mitochondrial quality control, whereas enhanced fission has been reported in several models of cardiovascular disease. However, limited information is available regarding the contribution of mitochondrial fission in hypertension. Here, we have tested the hypothesis that inhibition of mitochondrial fission attenuates the development of hypertension and associated vascular remodeling. In C57BL6 mice infused with angiotensin II for 2 weeks, co-treatment of mitochondrial fission inhibitor, mdivi1, significantly inhibited angiotensin II-induced development of hypertension assessed by radiotelemetry. Histological assessment of hearts and aortas showed that mdivi1 inhibited vessel fibrosis and hypertrophy induced by angiotensin II. This was associated with attenuation of angiotensin II-induced decline in mitochondrial aspect ratio seen in both the endothelial and medial layers of aortas. Mdivi1 also mitigated angiotensin II-induced cardiac hypertrophy assessed by heart weight-to-body weight ratio as well as by echocardiography. In ex vivo experiments, mdivi1 inhibited vasoconstriction and abolished the enhanced vascular reactivity by angiotensin II in small mesenteric arteries. Proteomic analysis on endothelial cell culture media with angiotensin II and/or mdivi1 treatment revealed that mdivi1 inhibited endothelial cell hypersecretory phenotype induced by angiotensin II. In addition, mdivi1 attenuated angiotensin II-induced protein induction of periostin, a myofibroblast marker in cultured vascular fibroblasts. In conclusion, these data suggest that mdivi1 prevented angiotensin II-induced hypertension and cardiovascular remodeling via multicellular mechanisms in the vasculature.


Subject(s)
Angiotensin II , Hypertension , Mice, Inbred C57BL , Mitochondrial Dynamics , Animals , Angiotensin II/pharmacology , Hypertension/chemically induced , Hypertension/prevention & control , Mitochondrial Dynamics/drug effects , Mice , Male , Quinazolinones/pharmacology , Vascular Remodeling/drug effects , Blood Pressure/drug effects
2.
Cardiovasc Res ; 120(6): 567-580, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38395029

ABSTRACT

Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.


Subject(s)
Fibrosis , Hypertension , Myofibroblasts , Humans , Myofibroblasts/pathology , Myofibroblasts/metabolism , Animals , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/pathology , Hypertension/immunology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Blood Pressure , Signal Transduction , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/immunology , Phenotype
3.
Hypertension ; 81(5): 977-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38372140

ABSTRACT

To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.


Subject(s)
Cardiovascular System , Hypertension , Humans , Signal Transduction , Blood Pressure , Renin-Angiotensin System/physiology , Angiotensin II/metabolism
4.
Hypertension ; 81(3): 572-581, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164754

ABSTRACT

BACKGROUND: Multiple pathways and factors are involved in the rupture of intracranial aneurysms. The EGFR (epidermal growth factor receptor) has been shown to mediate inflammatory vascular diseases, including atherosclerosis and aortic aneurysm. However, the role of EGFR in mediating intracranial aneurysm rupture and its underlying mechanisms have yet to be determined. Emerging evidence indicates that endoplasmic reticulum (ER) stress might be the link between EGFR activation and the resultant inflammation. ER stress is strongly implicated in inflammation and apoptosis of vascular smooth muscle cells, both of which are key components of the pathophysiology of aneurysm rupture. Therefore, we hypothesized that EGFR activation promotes aneurysmal rupture by inducing ER stress. METHODS: Using a preclinical mouse model of intracranial aneurysm, we examined the potential roles of EGFR and ER stress in developing aneurysmal rupture. RESULTS: Pharmacological inhibition of EGFR markedly decreased the rupture rate of intracranial aneurysms without altering the formation rate. EGFR inhibition also significantly reduced the mRNA (messenger RNA) expression levels of ER-stress markers and inflammatory cytokines in cerebral arteries. Similarly, ER-stress inhibition also significantly decreased the rupture rate. In contrast, ER-stress induction nullified the protective effect of EGFR inhibition on aneurysm rupture. CONCLUSIONS: Our data suggest that EGFR activation is an upstream event that contributes to aneurysm rupture via the induction of ER stress. Pharmacological inhibition of EGFR or downstream ER stress may be a promising therapeutic strategy for preventing aneurysm rupture and subarachnoid hemorrhage.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Subarachnoid Hemorrhage , Mice , Animals , Intracranial Aneurysm/prevention & control , Intracranial Aneurysm/genetics , Subarachnoid Hemorrhage/prevention & control , Aneurysm, Ruptured/metabolism , ErbB Receptors , RNA, Messenger , Endoplasmic Reticulum Stress , Inflammation
5.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Article in English | MEDLINE | ID: mdl-38123151

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Receptors, G-Protein-Coupled , Humans , Ligands , Ion Channels/chemistry , Receptors, Cytoplasmic and Nuclear
6.
Anesth Prog ; 70(3): 137-139, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37850676

ABSTRACT

We report the case of an 8-year-old boy with left ventricular noncompaction cardiomyopathy (LVNC) and QT prolongation who experienced further prolongation of the QTc during general anesthesia for extraction of a maxillary mesiodens. Pronounced prolongation of the QTc was observed after induction of general anesthesia with thiamylal and during emergence. No notable fluctuations in blood pressure, heart rate, and estimated continuous cardiac output were observed. We considered it likely that the QT prolongation was triggered by thiamylal and increased sympathetic nervous system activity. During general anesthesia for children with LVNC and QT prolongation, it is necessary to monitor intraoperative hemodynamic fluctuations and prepare for the possible occurrence of arrhythmias.


Subject(s)
Cardiomyopathies , Long QT Syndrome , Male , Humans , Child , Long QT Syndrome/diagnosis , Long QT Syndrome/etiology , Thiamylal , Anesthesia, General/adverse effects , Arrhythmias, Cardiac , Cardiomyopathies/complications , Cardiomyopathies/diagnosis , Electrocardiography/adverse effects
7.
Can J Cardiol ; 39(12): 1795-1807, 2023 12.
Article in English | MEDLINE | ID: mdl-37394059

ABSTRACT

The renin-angiotensin system (RAS) is an essential hormonal system involved in water and sodium reabsorption, renal blood flow regulation, and arterial constriction. Systemic stimulation of the RAS with infusion of the main peptide angiotensin II (Ang II) in animals as well as pathological elevation of renin (ie, renovascular hypertension) to increase circulatory Ang II in humans ultimately lead to hypertension and end organ damage. In addition to hypertension, accumulating evidence supports that the Ang II type 1 receptor exerts a critical role in cardiovascular and kidney diseases independent of blood pressure elevation. In the past 2 decades, the identification of an increased number of peptides and receptors has facilitated the concept that the RAS has detrimental and beneficial effects on the cardiovascular system depending on which RAS components are activated. For example, angiotensin 1-7 and Ang II type 2 receptors act as a counter-regulatory system against the classical RAS by mediating vasodilation. Although the RAS as an endocrine system for regulation of blood pressure is well established, there remain many unanswered questions and controversial findings regarding blood pressure regulation and pathophysiological regulation of cardiovascular diseases at the tissue level. This review article includes the latest knowledge gleaned from cell type-selective gene deleted mice regarding cell type-specific roles of Ang II receptors and their significance in health and diseases are discussed. In particular, we focus on the roles of these receptors expressed in vascular, cardiac, and kidney epithelial cells.


Subject(s)
Hypertension , Kidney Diseases , Mice , Humans , Animals , Renin-Angiotensin System/physiology , Hypertension/genetics , Renin , Angiotensin II/metabolism , Blood Pressure
8.
Hypertens Res ; 46(8): 1923-1933, 2023 08.
Article in English | MEDLINE | ID: mdl-37308550

ABSTRACT

Fruit from the Prunus mume tree is a traditional food in Japan. Recently, bainiku-ekisu, an infused juice concentrate of Japanese Prunus mume, is attracting attention as a health promoting supplement. Angiotensin II (Ang II) plays a central role in development of hypertension. It has been reported that bainiku-ekisu treatment attenuates the growth-promoting signaling induced by Ang II in vascular smooth muscle cells. However, whether bainiku-ekisu has any effect on an animal model of hypertension remains unknown. Therefore, this study was designed to explore the potential anti-hypertensive benefit of bainiku-ekisu utilizing a mouse model of hypertension with Ang II infusion. Male C57BL/6 mice were infused with Ang II for 2 weeks and given 0.1% bainiku-ekisu containing water or normal water for 2 weeks with blood pressure evaluation. After 2 weeks, mice were euthanized, and the aortas were collected for evaluation of remodeling. Aortic medial hypertrophy was observed in control mice after Ang II infusion, which was attenuated in bainiku-ekisu group with Ang II infusion. Bainiku-ekisu further attenuated aortic induction of collagen producing cells and immune cell infiltration. Development of hypertension induced by Ang II was also prevented by bainiku-ekisu. Echocardiograph indicated protection of Ang II-induced cardiac hypertrophy by bainiku-ekisu. In vascular fibroblasts, bainiku-ekisu attenuated vascular cell adhesion molecule-1 induction, an endoplasmic reticulum stress marker, inositol requiring enzyme-1α phosphorylation, and enhancement in glucose consumption in response to Ang II. In conclusion, Bainiku-ekisu prevented Ang II-induced hypertension and inflammatory vascular remodeling. Potential cardiovascular health benefit to taking bainiku-ekisu should be further studied.


Subject(s)
Hypertension , Prunus domestica , Prunus , Mice , Animals , Angiotensin II/pharmacology , Vascular Remodeling/physiology , Mice, Inbred C57BL , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism
10.
Cell Rep ; 42(4): 112381, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043351

ABSTRACT

Appropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability. FXR1 binds and regulates actin polymerization. Mass spectrometry identifies that FXR1 interacts with cytoskeletal proteins, particularly Arp2, a protein crucial for VSMC contraction, and CYFIP1, a WASP family verprolin-homologous protein (WAVE) regulatory complex (WRC) protein that links mRNA processing with actin polymerization. Depletion of FXR1 decreases the cytoskeletal processes of adhesion, migration, contraction, and GTPase activation. Using telemetry, conditional FXR1SMC/SMC mice have decreased blood pressure and an abundance of cytoskeletal-associated transcripts. This indicates that FXR1 is a muscle-enhanced WRC modulatory protein that regulates VSMC cytoskeletal dynamics by regulation of cytoskeletal mRNA stability and actin polymerization and cytoskeletal protein-protein interactions, which can regulate blood pressure.


Subject(s)
Actins , Muscle, Smooth, Vascular , Humans , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Actins/metabolism , Blood Pressure , Cytoskeleton/metabolism , Cytoskeletal Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Muscle Proteins/metabolism , Cells, Cultured , RNA-Binding Proteins/metabolism
11.
Am J Pathol ; 193(5): 638-653, 2023 05.
Article in English | MEDLINE | ID: mdl-37080662

ABSTRACT

Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.


Subject(s)
Muscle, Smooth, Vascular , Vascular Diseases , Animals , Mice , Carotid Arteries/metabolism , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , RNA, Messenger/metabolism , Vascular Diseases/pathology
13.
Hypertension ; 80(3): 668-677, 2023 03.
Article in English | MEDLINE | ID: mdl-36628961

ABSTRACT

BACKGROUND: Ang II (angiotensin II) type 1 (AT1) receptors play a critical role in cardiovascular diseases such as hypertension. Rodents have 2 types of AT1 receptor (AT1A and AT1B) of which knock-in Tagln-mediated smooth muscle AT1A silencing attenuated Ang II-induced hypertension. Although vascular remodeling, a significant contributor to organ damage, occurs concurrently with hypertension in Ang II-infused mice, the contribution of smooth muscle AT1A in this process remains unexplored. Accordingly, it is hypothesized that smooth muscle AT1A receptors exclusively contribute to both medial thickening and adventitial fibrosis regardless of the presence of hypertension. METHODS: About 1 µg/kg per minute Ang II was infused for 2 weeks in 2 distinct AT1A receptor silenced mice, knock-in Tagln-mediated constitutive smooth muscle AT1A receptor silenced mice, and Myh11-mediated inducible smooth muscle AT1A together with global AT1B silenced mice for evaluation of hypertensive cardiovascular remodeling. RESULTS: Medial thickness, adventitial collagen deposition, and immune cell infiltration in aorta were increased in control mice but not in both smooth muscle AT1A receptor silenced mice. Coronary arterial perivascular fibrosis in response to Ang II infusion was also attenuated in both AT1A receptor silenced mice. Ang II-induced cardiac hypertrophy was attenuated in constitutive smooth muscle AT1A receptor silenced mice. However, Ang II-induced cardiac hypertrophy and hypertension were not altered in inducible smooth muscle AT1A receptor silenced mice. CONCLUSIONS: Smooth muscle AT1A receptors mediate Ang II-induced vascular remodeling including medial hypertrophy and inflammatory perivascular fibrosis regardless of the presence of hypertension. Our data suggest an independent etiology of blood pressure elevation and hypertensive vascular remodeling in response to Ang II.


Subject(s)
Hypertension , Receptor, Angiotensin, Type 1 , Mice , Animals , Receptor, Angiotensin, Type 1/genetics , Angiotensin II/pharmacology , Vascular Remodeling , Myocytes, Smooth Muscle , Cardiomegaly , Fibrosis , Mice, Knockout , Mice, Inbred C57BL
14.
J Am Heart Assoc ; 11(23): e028201, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36444851

ABSTRACT

Background Investigations into alternative treatments for hypertension are necessary because current treatments cannot fully reduce the risk for the development of cardiovascular diseases. Chronic activation of unfolded protein response attributable to the endoplasmic reticulum stress has been proposed as a potential therapeutic target for hypertension and associated vascular remodeling. Triggered by the accumulation of misfolded proteins, chronic unfolded protein response leads to downstream signaling of cellular inflammation and dysfunction. Here, we have tested our hypothesis that a novel chemical chaperone, 3-hydroxy-2-naphthoic acid (3HNA) can attenuate angiotensin II (AngII)-induced vascular remodeling and hypertension. Methods and Results Mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension with or without 3HNA treatment. We found that injections of 3HNA prevented hypertension and increase in heart weight body weight ratio induced by AngII infusion. Histological assessment revealed that 3HNA treatment prevented vascular medial thickening as well as perivascular fibrosis in response to AngII infusion. In cultured vascular smooth muscle cells, 3HNA attenuated enhancement in protein synthesis induced by AngII. In vascular adventitial fibroblasts, 3HNA prevented induction of unfolded protein response markers. Conclusions We present evidence that a chemical chaperone 3HNA prevents vascular remodeling and hypertension in mice with AngII infusion, and 3HNA further prevents increase in protein synthesis in AngII-stimulated vascular smooth muscle cells. Using 3HNA may represent a novel therapy for hypertension with multiple benefits by preserving protein homeostasis under cardiovascular stress.


Subject(s)
Angiotensin II , Hypertension , Animals , Mice , Vascular Remodeling , Hydroxy Acids , Endoplasmic Reticulum , Hypertension/chemically induced , Hypertension/drug therapy
16.
Hepatol Res ; 52(12): 1020-1033, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36001355

ABSTRACT

AIM: The mitochondria are highly plastic and dynamic organelles; mitochondrial dysfunction has been reported to play causative roles in diabetes, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). However, the relationship between mitochondrial fission and NAFLD pathogenesis remains unknown. We aimed to investigate whether alterations in mitochondrial fission could play a role in the progression of NAFLD. METHODS: Mice were fed a standard diet or choline-deficient, L-amino acid-defined (CDAA) diet with vehicle or mitochondrial division inhibitor-1. RESULTS: Substantial enhancement of mitochondrial fission in hepatocytes was triggered by 4 weeks of feeding and was associated with changes reflecting the early stage of human nonalcoholic steatohepatitis (NASH), steatotic change with liver inflammation, and hepatocyte ballooning. Excessive mitochondrial fission inhibition in hepatocytes and lipid metabolism dysregulation in adipose tissue attenuated liver inflammation and fibrogenesis but not steatosis and the systemic pathological changes in the early and chronic fibrotic NASH stages (4- and 12-week CDAA feeding). These beneficial changes due to the suppression of mitochondrial fission against the liver and systemic injuries were associated with decreased autophagic responses and endoplasmic reticulum stress in hepatocytes. Injuries to other liver cells, such as endothelial cells, Kupffer cells, and hepatic stellate cells, were also attenuated by the inhibition of mitochondrial fission in hepatocytes. CONCLUSIONS: Taken together, these findings suggest that excessive mitochondrial fission in hepatocytes could play a causative role in NAFLD progression by liver inflammation and fibrogenesis through altered cell cross-talk. This study provides a potential therapeutic target for NAFLD.

17.
Hypertension ; 79(7): 1327-1338, 2022 07.
Article in English | MEDLINE | ID: mdl-35543145

ABSTRACT

Aortic aneurysm is a complex pathology that can be lethal if not detected in time. Although several molecular mechanisms and pathways have been identified to be involved in aortic aneurysm development and growth, the current lack of an effective pharmacological treatment highlights the need for a more thorough understanding of the factors that regulate the remodeling of the aortic wall in response to triggers that lead to aneurysm formation. This task is further complicated by the regional heterogeneity of the aorta and that thoracic and abdominal aortic aneurysm are distinct pathologies with different risk factors and distinct course of progression. ADAMs (a disintegrin and metalloproteinases) and ADAMTS (ADAMs with a thrombospondin motif) are proteinases that share similarities with other proteinases but possess unique and diverse properties that place them in a category of their own. In this review, we discuss what is known on how ADAMs and ADAMTSs are altered in abdominal aortic aneurysm and thoracic aortic aneurysm in patients, in different animal models, and their role in regulating the function of different vascular and inflammatory cell types. A full understanding of the role of ADAMs and ADAMTSs in aortic aneurysm will help reveal a more complete understanding of the underlying mechanism driving aneurysm formation, which will help towards developing an effective treatment in preventing or limiting the growth of aortic aneurysm.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm, Thoracic , ADAM Proteins/metabolism , Animals , Aortic Aneurysm, Thoracic/metabolism , Disintegrins , Humans , Thrombospondins
18.
Redox Biol ; 50: 102252, 2022 04.
Article in English | MEDLINE | ID: mdl-35121402

ABSTRACT

Tumor suppressor p53 plays a pivotal role in orchestrating mitochondrial remodeling by regulating their content, fusion/fission processes, and intracellular signaling molecules that are associated with mitophagy and apoptosis pathways. In order to determine a molecular mechanism underlying flow-mediated mitochondrial remodeling in endothelial cells, we examined, herein, the role of p53 on mitochondrial adaptations to physiological flow and its relevance to vascular function using endothelial cell-specific p53 deficient mice. We observed no changes in aerobic capacity, basal blood pressure, or endothelial mitochondrial phenotypes in the endothelial p53 mull animals. However, after 7 weeks of voluntary wheel running exercise, blood pressure reduction and endothelial mitochondrial remodeling (biogenesis, elongation, and mtDNA replication) were substantially blunted in endothelial p53 null animals compared to the wild-type, subjected to angiotensin II-induced hypertension. In addition, endothelial mtDNA lesions were significantly reduced following voluntary running exercise in wild-type mice, but not in the endothelial p53 null mice. Moreover, in vitro studies demonstrated that unidirectional laminar flow exposure significantly increased key putative regulators for mitochondrial remodeling and reduced mitochondrial reactive oxygen species generation and mtDNA damage in a p53-dependent manner. Mechanistically, unidirectional laminar flow instigated translocalization of p53 into the mitochondrial matrix where it binds to mitochondrial transcription factor A, TFAM, resulting in improving mtDNA integrity. Taken together, our findings suggest that p53 plays an integral role in mitochondrial remodeling under physiological flow condition and the flow-induced p53-TFAM axis may be a novel molecular intersection for enhancing mitochondrial homeostasis in endothelial cells.


Subject(s)
DNA, Mitochondrial , Tumor Suppressor Protein p53 , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Mice , Motor Activity , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...