Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630754

ABSTRACT

PURPOSE: Cancer patients frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NETs), we have investigated the mechanisms, consequences and the occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, cancer patients and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice assessing their effects on metastasis. Circulating NETs in irradiated cancer patients were measured by ELISA methods detecting MPO-DNA complexes and citrullinated H3. RESULTS: Very low γ-radiation doses (0.5-1 Gy) given to neutrophils elicit NET formation in a manner dependent on oxidative stress, NADPH oxidase activity and autocrine interleukin-8. Radiation-induced NETs interfere with NK- and T-cell cytotoxicity. As a consequence, pre-injection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS: NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments.

2.
Clin Cancer Res ; 29(21): 4320-4322, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37656058

ABSTRACT

Bispecific T-cell engagers and chimeric antigen receptor T cells share the problem of eliciting acute systemic inflammation episodes known as cytokine release syndrome. Knowledge on the sequential waves of cytokines that can be neutralized with clinically available agents is crucial to prevent or treat this condition without jeopardizing the antitumor therapeutic outcome. See related article by Leclercq-Cohen et al., p. 4449.


Subject(s)
Antibodies, Bispecific , Cytokine Release Syndrome , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , T-Lymphocytes , Cytokines , Antigens, CD19
3.
Mol Ther Nucleic Acids ; 33: 668-682, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37650116

ABSTRACT

Intratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor ß (TGF-ß) and CD137 (4-1BB). Several neutralizing TGF-ß agents and CD137 agonists are also undergoing early-phase clinical trials. To attain TGF-ß and CD137 binding by the constructions, we used bispecific tandem scFv antibodies (taFvs) derived from the specific 1D11 and 1D8 monoclonal antibodies (mAbs), respectively. Transfection of mRNAs encoding the chimeric constructs achieved functional expression of the proteins able to act on their targets. Upon mRNA intratumoral injections in the transplantable mouse cancer models CT26, MC38, and B16OVA, potent therapeutic effects were observed following repeated injections into the tumors. Efficacy was dependent on the number of CD8+ T cells able to recognize tumor antigens that infiltrated the malignant tissue. Although the abscopal effects on concomitant uninjected lesions were modest, such distant effects on untreated lesions were markedly increased when combined with systemic PD-1 blockade.

4.
Sci Adv ; 9(33): eadf6692, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37595047

ABSTRACT

CD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex. Moreover, cIAPs are required for CD137 signaling toward the NF-κB and MAPK pathways and for costimulation of human and mouse T lymphocytes. Functional evidence was substantiated with SMAC mimetics that trigger cIAP degradation and by transfecting cIAP dominant-negative variants. Antitumor effects of agonist anti-CD137 mAbs are critically dependent on the integrity of cIAPs in cancer mouse models, and cIAPs are also required for signaling from CARs encompassing CD137's cytoplasmic tail.


Subject(s)
Neoplasms , Signal Transduction , Humans , Animals , Mice , NF-kappa B , Antibodies, Monoclonal/pharmacology , Spectrum Analysis, Raman , Neoplasms/drug therapy
5.
Clin Cancer Res ; 29(23): 4711-4727, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37522874

ABSTRACT

In cancer pathogenesis, soluble mediators are responsible for a type of inflammation that favors the progression of tumors. The mechanisms chiefly involve changes in the cellular composition of the tumor tissue stroma and in the functional modulation of myeloid and lymphoid leukocytes. Active immunosuppression, proangiogenesis, changes in leukocyte traffic, extracellular matrix remodeling, and alterations in tumor-antigen presentation are the main mechanisms linked to the inflammation that fosters tumor growth and metastasis. Soluble inflammatory mediators and their receptors are amenable to various types of inhibitors that can be combined with other immunotherapy approaches. The main proinflammatory targets which can be interfered with at present and which are under preclinical and clinical development are IL1ß, IL6, the CXCR1/2 chemokine axis, TNFα, VEGF, leukemia inhibitory factor, CCL2, IL35, and prostaglandins. In many instances, the corresponding neutralizing agents are already clinically available and can be repurposed as a result of their use in other areas of medicine such as autoimmune diseases and chronic inflammatory conditions.


Subject(s)
Inflammation Mediators , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Inflammation , Chemokines
6.
Cell Rep Med ; : 100978, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36933554

ABSTRACT

Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.

7.
Methods Cell Biol ; 174: 31-41, 2023.
Article in English | MEDLINE | ID: mdl-36710049

ABSTRACT

The human tumor microenvironment requires use of high-dimensional single-cell tools to uncover its cellular complexity and functional variety. For decades, flow cytometry has been the technology of choice to explore immune cell diversity in different pathological contexts. Recently, a new format for flow cytometry - termed mass cytometry - has been developed. It allows for simultaneous interrogation of more than 40 different molecular markers, without the need for spectral compensation, which significantly augments the ability of cytometry to evaluate complex cellular systems and processes. Currently, different multiparametric single-cell analysis approaches are being widely adopted to interrogate the human tumor microenvironment. However, important challenges must be addressed when solid tissues are analyzed by single-cell technologies. This protocol describes the challenge and better use of single-cell mass cytometry to dissect tumor infiltrating leukocytes from surgically resected tumoral lung tissues.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Flow Cytometry/methods , Biomarkers , Lung
8.
Cancer Discov ; 12(9): 2140-2157, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771565

ABSTRACT

Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1ß upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1ß induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1ß inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE: IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1ß are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Cytokines , Tumor Necrosis Factor-alpha , Animals , Cytokines/metabolism , Humans , Infliximab/pharmacology , Infliximab/therapeutic use , Interleukin-1beta/metabolism , Interleukin-8/genetics , Mice , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
9.
Clin Cancer Res ; 28(10): 1993-1995, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35247905

ABSTRACT

Ovarian cancer is often limited to the peritoneal cavity in the form of peritoneal carcinomatosis. Peritoneal spreading offers the opportunity for locoregional delivery of combinations of immunotherapy agents, maximizing bioavailability while potentially reducing systemic exposure and side effects. See related article by Orr et al., p. 2038.


Subject(s)
Ovarian Neoplasms , Peritoneal Neoplasms , Carcinoma, Ovarian Epithelial , Chemokines , Female , Humans , Immunotherapy/adverse effects , Ligands , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/drug therapy , Receptors, CXCR3
10.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35236742

ABSTRACT

BACKGROUND: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. METHODS: We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. RESULTS: CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. CONCLUSION: sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.


Subject(s)
Immunotherapy , Neoplasms , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes , Humans , Mice , Neoplasms/drug therapy , Receptors, Tumor Necrosis Factor
11.
J Pathol ; 255(2): 190-201, 2021 10.
Article in English | MEDLINE | ID: mdl-34184758

ABSTRACT

Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8+ T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8+ T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8+ T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8+ tumour-infiltrating lymphocytes. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Extracellular Traps/immunology , Interleukin-8/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology , Humans
12.
Clin Cancer Res ; 27(9): 2383-2393, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33376096

ABSTRACT

One of the most important mechanisms by which cancer fosters its own development is the generation of an immune microenvironment that inhibits or impairs antitumor immune responses. A cancer permissive immune microenvironment is present in a large proportion of the patients with cancer who do not respond to immunotherapy approaches intended to trigger preexisting antitumor immune responses, for instance, immune checkpoint blockade. High circulating levels of IL8 in patients with cancer quite accurately predict those who will not benefit from checkpoint-based immunotherapy. IL8 has been reported to favor cancer progression and metastases via different mechanisms, including proangiogenesis and the maintenance of cancer stem cells, but its ability to attract and functionally modulate neutrophils and macrophages is arguably one of the most important factors. IL8 does not only recruit neutrophils to tumor lesions, but also triggers the extrusion of neutrophil extracellular traps (NET). The relevance and mechanisms underlying the contribution of both neutrophils and NETs to cancer development and progression are starting to be uncovered and include both direct effects on cancer cells and changes in the tumor microenvironment, such as facilitating metastasis, awakening micrometastases from dormancy, and facilitating escape from cytotoxic immune cells. Blockade of IL8 or its receptors (CXCR1 and CXCR2) is being pursued in drug development, and clinical trials alone or in combination with anti-PD-L1 checkpoint inhibitors are already ongoing.


Subject(s)
Extracellular Traps/immunology , Interleukin-8/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Tumor Microenvironment/immunology , Animals , Biomarkers , Cell Line, Tumor , Cytokines/metabolism , Disease Management , Disease Susceptibility , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Immunity , Immunotherapy , Neoplasms/diagnosis , Neoplasms/therapy , Neutrophils/pathology
13.
Clin Cancer Res ; 27(2): 374-376, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33188143

ABSTRACT

It has been reported that a group of patients with advanced non-small cell lung cancer showed circulating T cells with a senescent phenotype, and an abundance of such cells is associated with worse clinical response to immune checkpoint inhibitors. This study encourages further analysis of the role of senescent T cells in resistance to lung cancer immunotherapy.See related article by Ferrara et al., p. 492.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunosenescence , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms/drug therapy , Platinum/therapeutic use , Programmed Cell Death 1 Receptor/therapeutic use , T-Lymphocytes
14.
Cancer J ; 26(6): 473-484, 2020.
Article in English | MEDLINE | ID: mdl-33298718

ABSTRACT

Anti-PD-(L)1 therapy represents a turning point in lung cancer immunotherapy, moving from previously ineffective enhancer strategies to immune checkpoints as standard first- and second-line therapies. This unprecedented success highlights the importance of mechanisms to escape immune attack, such PD-1/PD-L1 axis, and emphasize the importance to better understand the tumor immune microenvironment. Analyzing the specifics of immune response against lung tumor cells and how malignant cells progressively adapt to this pressure may help to understand which are the key aspects to guide the development of new therapeutic strategies. Here we review the past and present of clinical lung cancer immunotherapy and give a perspective for the future development based on emerging biological insights.


Subject(s)
Immunotherapy , Lung Neoplasms , B7-H1 Antigen , Humans , Lung Neoplasms/therapy , Molecular Targeted Therapy , Programmed Cell Death 1 Receptor , Tumor Microenvironment
15.
Clin Cancer Res ; 26(16): 4186-4197, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32354698

ABSTRACT

Immune checkpoint inhibitors (ICI) have revolutionized the management of advanced non-small cell lung cancer (NSCLC). However, most pivotal phase III trials systematically excluded patients with active brain metastases, precluding the generalization of the results. Although theoretically restricted from crossing the blood-brain barrier, the novel pharmacokinetic/pharmacodynamic profiles of anti-PD-1/PD-L1 drugs have prompted studies to evaluate their activity in patients with NSCLC with active central nervous system (CNS) involvement. Encouraging results have suggested that ICI could be active in the CNS in selected patients with driver-negative advanced NSCLC with high PD-L1 expression and low CNS disease burden. Single-agent CNS response rates around 30% have been reported. Beyond this particular setting, anti-PD-1/PD-L1 antibodies have been evaluated in patients receiving local therapy for brain metastases (BM), addressing concerns about potential neurologic toxicity risks associated with radiotherapy, more specifically, radionecrosis (RN). Accordingly, a variety of clinical and imaging strategies are being appropriately developed to evaluate tumor response and to rule out pseudoprogression or radionecrosis. Our purpose is to critically summarize the advances regarding the role of systemic anti-PD-1/PD-L1 antibodies for the treatment of NSCLC BM. Data were collected from the PubMed database, reference lists, and abstracts from the latest scientific meetings. Recent reports suggest anti-PD-1/PD-L1 agents are active in a subset of patients with NSCLC with BM showing acceptable toxicity. These advances are expected to change soon the management of these patients but additional research is required to address concerns regarding radionecrosis and the appropriate sequencing of local and systemic therapy combinations.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Central Nervous System Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/immunology , Central Nervous System Neoplasms/secondary , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasm Metastasis
17.
Nat Cancer ; 1(1): 75-85, 2020 01.
Article in English | MEDLINE | ID: mdl-35121837

ABSTRACT

Harnessing the immune system by blocking the programmed cell death protein 1 (PD-1) pathway has been a major breakthrough in non-small-cell lung cancer treatment. Nonetheless, many patients fail to respond to PD-1 inhibition. Using three syngeneic models, we demonstrate that short-term starvation synergizes with PD-1 blockade to inhibit lung cancer progression and metastasis. This antitumor activity was linked to a reduction in circulating insulin-like growth factor 1 (IGF-1) and a downregulation of IGF-1 receptor (IGF-1R) signaling in tumor cells. A combined inhibition of IGF-1R and PD-1 synergistically reduced tumor growth in mice. This effect required CD8 cells, boosted the intratumoral CD8/Treg ratio and led to the development of tumor-specific immunity. In patients with non-small-cell lung cancer, high plasma levels of IGF-1 or high IGF-1R expression in tumors was associated with resistance to anti-PD-1-programmed death-ligand 1 immunotherapy. In conclusion, our data strongly support the clinical evaluation of IGF-1 modulators in combination with PD-1 blockade.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors , Insulin-Like Growth Factor I/therapeutic use , Lung Neoplasms/drug therapy , Mice , Programmed Cell Death 1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...