Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(51): e2206952, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36255145

ABSTRACT

Formation of ionogels through in situ polymerization can effectively improve electrolyte processability; however, the curing process has been slow and oxygen-sensitive. Considering the low oxygen solubility of poly(ionic liquid)s (PILs), in situ polymerized ionogels are designed to realize excellent electrolytes. Herein, two in situ polymerized ionogels (PIL A & PIL B) are formulated, and they can be rapidly photocured within a minute. The ionogels are highly transparent, stretchable, and exhibit excellent physicochemical stability, including thermal, electrochemical, and air stability, allowing them to perform in various conditions. Benefitting from these properties, two high-performance electrochromic devices (ECDs) are assembled, with iron-centered coordination polymer (FeCP) and tungsten oxide (P-WO3 ) electrochromic materials, achieving high color contrast (45.2% and 56.4%), fast response time (1.5/1.9 and 1.7/6.4 s), and excellent cycling endurance (>90% retention over 3000 cycles). Attributed to the thermal robustness of the ionogels, the ECDs can also be operated over a wide temperature range (-20 to 100 °C). With the use of deformable substrates (e.g., ultrathin ITO glass), curved electrochromic eye protector and flexible electrochromic displays are realized, highlighting their potential use in futuristic wearables.

2.
ACS Appl Mater Interfaces ; 14(17): 20237-20246, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35467337

ABSTRACT

An electrochromic device (ECD), which can switch between black and transmissive states under electrical bias, is a promising candidate for smart windows due to its color neutrality and excellent durability. Most of the black ECDs are achieved through a reversible electrodeposition and dissolution mechanism; however, they typically suffer from relatively poor cycling stability and a slow coloration/bleaching time. Herein, we present a heat-insulating black ECD with a gel electrolyte that operates via reversible Ni-Cu electrodeposition and dissolution. With the adoption of a Cu alloying strategy and a compatible gel electrolyte, this two-electrode ECD (5.0 cm × 2.5 cm) can achieve a cycling stability of 1500 cycles with transmittance modulation up to 55.2% in short coloration (6.2 s) and bleaching times (13.2 s) at a wavelength of 550 nm. Additionally, the ECD can be switched from the transparent state (visible light transmittance: 0.566) to the opaque state (visible light transmittance: 0.003) within 1 min, reaching transmittance less than 5% across the visible-near-infrared spectrum (400-2000 nm) to efficiently block solar heat. Besides, in the voltage-off state, the black Ni-Cu alloy film can be sustained for more than 60 min (at room temperature, λ = 550 nm). Under infrared irradiation (170 W/m2) for 30 min, the black ECD blocks up to 35.0% of infrared radiation, which not only effectively prevents the heat transmission for energy management but also finds potential applications for promoting indoor human health and indoor farming.

3.
Adv Sci (Weinh) ; 7(13): 1903198, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32670746

ABSTRACT

Reversible electrochemical mirror (REM) electrochromic devices with electrochemical tunability in multiple optical states are exciting alternatives to conventional electrochromic smart windows. Electrochromic devices are studied extensively, yet widespread adoptions have not been achieved due to problems associated with durability, switching speed, limited options on optical states, and cost. In this study, a REM electrochromic device based on CuSn alloy is developed, which offers highly reversible switching between transparent, greyish-blue, and mirror states via reversible electrodeposition and dissolution. The alloying element, Sn acts as an electrochemical mediator, which facilitates the electrodeposition and dissolution of Cu. The CuSn-based REM device shows superior cycling stability for 2400 cycles (transmittance mode) and 1000 cycles (reflectance mode). The electrodeposited CuSn alloy film is resistant to surface oxidation in ambient air, with a 2.9% difference in reflectance at 2000 nm after 3 days. In addition, the alloy film exhibits excellent NIR reflectance property with thermal modulation of 18.5 °C at a high temperature of 180 °C. The REM device with zero power consumption maintains its mirror state for at least 100 min, making it a promising candidate for energy-efficient applications.

4.
ACS Appl Mater Interfaces ; 10(43): 37685-37693, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30272945

ABSTRACT

Some animals and plants in nature are endowed with elegant color-changing ability, which inspired the development of biomimetic systems with multifunctionality, such as controllable colors, transmittance, and mechanical pliability that are significant for the development of energy-efficient and deformable chromic devices, such as wearable displays, smart windows, decorative architectures, camouflage devices, etc. Inspired by the color-changing ability of Diphylleia grayi (commonly known as the skeleton flower), we developed a porous poly(dimethylsiloxane) (PDMS) film that dynamically and dramatically changes its color by the adsorption/desorption of a minute amount of water (5 g m-2) or other solvents. This hydrochromic phenomenon was analyzed in detail, and it matched well with the Mie scattering theory. The porous PDMS film of about 0.4 mm thickness exhibits a large optical modulation (about 75-80%) in the broad visible and near-infrared region and a coloration speed of less than 9 min. Additionally, the PDMS film can sustain uniaxial strain up to 100% in both transparent and colored states. We believe this new strategy to develop highly scalable porous PDMS films offers a practical route to realize bionic and botanic inspired deformable energy-efficient façades, chromogenic wearables, smart windows, smart displays, camouflage devices, etc.

5.
Nanoscale ; 8(1): 348-57, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26610811

ABSTRACT

Nanostructured thin films are important in the fields of energy conversion and storage. In particular, multi-layered nanostructured films play an important role as a part of the energy system for energy saving applications in buildings. Inkjet printing is a low-cost and attractive technology for patterning and deposition of multi-layered nanostructured materials on various substrates. However, it requires the development of a suitable ink formulation with optimum viscosity, surface tension and evaporation rate for various materials. In this study, a versatile ink formulation was successfully developed to prepare NiO and WO3 nanostructured films with strong adhesion to ITO coated glass using inkjet printing for energy saving electrochromic applications. We achieved a high performance electrochromic electrode, producing porous and continuous electrochromic films without aggregation. The NiO film with 9 printed layers exhibits an optical modulation of 64.2% at 550 nm and a coloration efficiency (CE) of 136.7 cm(2) C(-1). An inkjet-printed complementary all solid-state device was assembled, delivering a larger optical modulation of 75.4% at 633 nm and a higher CE of 131.9 cm(2) C(-1) among all solid-state devices. The enhanced contrast is due to the printed NiO film that not only performs as an ion storage layer, but also as a complementary electrochromic layer.

6.
Ultrason Sonochem ; 19(1): 151-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21715212

ABSTRACT

Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11±0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81±0.81% with 3.19±0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27±0.52% with ß-carotene constituted 1.73±0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.


Subject(s)
Carotenoids/isolation & purification , Solanum lycopersicum/chemistry , Ultrasonics/methods , Lycopene , Surface Properties , Ultrasonics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...