Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(9): 094801, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230850

ABSTRACT

We report the all-optical generation and characterization of tilted electron pulses by means of single-cycle terahertz radiation at an electron-transmitting mirror at slanted orientation. Femtosecond electron pulses with a chosen tilt angle are produced at an almost arbitrary target location. The experiments along with theory further reveal that the pulse front tilt in electron optics is directly connected to angular dispersion. Quantum mechanical considerations suggest that this relation is general for particle beams at any degree of coherence. These results indicate that ultrashort electron pulses can be shaped in space and time as versatilely as femtosecond laser pulses, but at 10^{5} times finer wavelength and subnanometer imaging resolution.

2.
Struct Dyn ; 5(4): 044303, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30221179

ABSTRACT

Time-resolved electron energy analysis and loss spectroscopy can reveal a wealth of information about material properties and dynamical light-matter interactions. Here, we report an all-optical concept for measuring energy spectra of femtosecond electron pulses with sub-eV resolution. Laser-generated terahertz radiation is used to measure arrival time differences within electron pulses with few-femtosecond precision. Controlled dispersion and subsequent compression of the electron pulses provide almost any desired compromise of energy resolution, signal strength, and time resolution. A proof-of-concept experiment on aluminum reveals an energy resolution of <3.5 eV (rms) at 70-keV after a drift distance of only 0.5 m. Simulations of a two-stage scheme reveal that pre-stretched pulses can be used to achieve <10 meV resolution, independent of the source's initial energy spread and limited only by the achievable THz field strength and measuring time.

3.
Opt Express ; 26(4): 3861-3869, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475364

ABSTRACT

We investigate two approaches for the spectral broadening and compression of 1-ps long pulses of a thin-disk laser amplifier running at 50 kHz repetition rate at 1030 nm wavelength. We find that with a single, 2.66-m long stretched flexible hollow fiber filled with xenon gas, Fourier transform limited output pulse duration of 66 fs can be directly reached. For larger pulse shortening, we applied a hybrid cascaded approach involving a BBO-based pre-compressor and a long hollow fiber. We could achieve 33-times temporal shortening of 1-ps pulses down to a duration of 30 fs at an overall efficiency of ~29% with an output power level of 3.7 W. These results demonstrate the potential of stretched flexible fibers with their free length scalability for shortening laser pulses of moderate peak power.

4.
Phys Rev Lett ; 114(22): 227601, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26196645

ABSTRACT

We report on a quantitative measurement of the spatial coherence of electrons emitted from a sharp metal needle tip. We investigate the coherence in photoemission triggered by a near-ultraviolet laser with a photon energy of 3.1 eV and compare it to dc-field emission. A carbon nanotube is brought into close proximity to the emitter tip to act as an electrostatic biprism. From the resulting electron matter wave interference fringes, we deduce an upper limit of the effective source radius both in laser-triggered and dc-field emission mode, which quantifies the spatial coherence of the emitted electron beam. We obtain (0.80±0.05) nm in laser-triggered and (0.55±0.02) nm in dc-field emission mode, revealing that the outstanding coherence properties of electron beams from needle tip field emitters are largely maintained in laser-induced emission. In addition, the relative coherence width of 0.36 of the photoemitted electron beam is the largest observed so far. The preservation of electronic coherence during emission as well as ramifications for time-resolved electron imaging techniques are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...